
1.  Introduction
Due to increased urbanization adjacent to water bodies (Tibbetts, 2002), studies have frequently examined the 
complex interactions along the land-water interface and their impacts on urban weather and climate (Hu & 
Xue, 2016; Keeler & Kristovich, 2012; Sharma et al., 2018; Shepherd & Burian, 2003; Theeuwes et al., 2013). 
The thermostatic effect of water leads to a positive thermal gradient from water bodies to land during daytime 
since the land warms faster than the water, generating lake or sea breezes that flow from over the cooler water 
surface to the warmer and lower pressure land surface (Birch et al., 2015; S. T. K. Miller et al., 2003). The effect 
reverses at night with the land near water bodies being warmer (due to higher thermal inertia of water) than land 
in the interior and land breezes generated from the land toward the water (J. Yang et al., 2022). These interactions 
set up strong temperature gradients across the waterfront that can influence heat exposure for coastal and shore-
line populations. Several studies have examined this coastal influence on urban heat exposure using air temper-
ature or satellite-derived surface or skin temperature (Roth et al., 1989; Wu et al., 2019; J. Yang et al., 2022). 
Although skin and air temperature are coupled at large scales, pedestrians are exposed to ambient air temperature, 

Abstract  Shoreline cities are influenced by both urban-scale processes and land-water interactions, with 
consequences on heat exposure and its disparities. Heat exposure studies over these cities have focused on 
air and skin temperature, even though moisture advection from water bodies can also modulate heat stress. 
Here, using an ensemble of model simulations covering Chicago, we find that Lake Michigan strongly reduces 
heat exposure (2.75°C reduction in maximum average air temperature in Chicago) and heat stress (maximum 
average wet bulb globe temperature reduced by 0.86°C) during the day, while urbanization enhances them at 
night (2.75 and 1.57°C increases in minimum average air and wet bulb globe temperature, respectively). We 
also demonstrate that urban and lake impacts on temperature (particularly skin temperature), including their 
extremes, and lake-to-land gradients, are stronger than the corresponding impacts on heat stress, partly due to 
humidity-related feedback. Likewise, environmental disparities across community areas in Chicago seen for 
skin temperature are much higher (1.29°C increase for maximum average values per $10,000 higher median 
income per capita) than disparities in air temperature (0.50°C increase) and wet bulb globe temperature (0.23°C 
increase). The results call for consistent use of physiologically relevant heat exposure metrics to accurately 
capture the public health implications of urbanization.

Plain Language Summary  Cities along coastlines are affected by both urban processes and 
interactions between land and water. Previous studies on heat exposure in these cities primarily focused on 
temperature of the ground surface (or skin) and the air above that surface, generally overlooking the influence 
of moisture from water bodies on heat stress. In our study, using multiple coupled weather simulations, we 
show that during the day, Lake Michigan significantly reduces heat exposure and heat stress. However, at 
night, urbanization increases them. We also found that the effects of urbanization and the lake on temperature, 
especially skin temperature and its extreme, as well as the temperature difference between the lake and the 
land, are stronger than their impacts on heat stress. This is due to weaker coupling between daytime air and 
skin temperature, as well as to humidity-related factors. Moreover, we observed that environmental disparities 
in skin temperature are much higher than equivalent disparities in heat stress. These findings highlight the 
importance of using heat exposure metrics that are relevant to human physiology to accurately understand 
and  inform the public health implications of urbanization.
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not skin temperature, especially relevant within cities (Venter et al., 2021). Moreover, the physiological response 
to heat depends not only on air temperature, but also on relative humidity and wind speed (among other factors) 
(Anderson et al., 2013). For instance, all else remaining constant, more moisture in the air usually increases heat 
stress, which reduces the differential between human skin and core temperature; and thus the body's cooling effi-
ciency (Im et al., 2017). Both urbanization and proximity to water bodies can modify ambient relative humidity 
and wind patterns. Urbanization can dry the air by modifying the city's surface energy balance, often referred to as 
the urban moisture or dry island effect (Chakraborty et al., 2022; X. Huang et al., 2021; Z. Wang et al., 2021),  and 
impede wind flow by increasing surface roughness (Qian et al., 2022). On the other hand, breezes originating 
from water bodies can bring in more moisture during the day (S. T. K. Miller et  al., 2003). Although previ-
ous urban modeling studies have considered physiologically relevant heat stress metric (Chakraborty, Newman, 
et al., 2023; K. Huang et al., 2021; Oleson et al., 2015; Zhao, 2021), they are generally not run with configura-
tions or resolutions capable of resolving coastal gradients. Thus, there is a need to understand how the interaction 
between urbanization and adjacent water bodies impact air temperature, relative humidity, and wind, and thus 
heat stress, in shoreline cities.

Due to the heterogeneity of cities, heat exposure shows large intra-urban variability. Across a global subset of cities 
(Chakraborty et al., 2019), and particularly in the US (Hsu et al., 2021), this variability leads to disproportionately 
higher heat exposure for poorer and other vulnerable communities. Some of these disparities relate to population 
dynamics within cities, frequently associated with historical discriminatory practices (Hoffman et al., 2020) as well 
as present inequities (Chakraborty, Newman, et al., 2023; Juday, 2015). Most multi-city studies that have examined 
disparities in heat exposure have done so using satellite-derived skin temperature (Benz & Burney, 2021; Chakraborty 
et al., 2019; Hoffman et al., 2020; Hsu et al., 2021). For land-locked cities, these disparities are strongly associ-
ated with inequities in urban vegetation, with richer populations living in greener areas (Chakraborty et al., 2020). 
However, cities along the waterfront are more complicated due to competing effects of neighborhood greenness and 
access to waterfronts on real estate prices (N. G. Miller et al., 2019), and thus on population distributions. Regarding 
the humidity contribution to heat stress, the moisture brought in by sea and lake breezes into neighborhoods can be 
a strong function of their proximity to the waterfront, while neighborhood-scale built-up properties (including urban 
vegetation) would also impact near-surface moisture content (Chakraborty et al., 2022; Qian et al., 2022). Although 
these complexities (the role of proximity to the water vs. neighborhood characteristics) are evident when examining 
satellite-derived skin temperature (Chakraborty et al., 2020), we do not know the bulk outcome of population distri-
butions and meteorological variability within shoreline cities on potential disparities in heat stress.

Here, we conduct several sensitivity experiments using the Weather Research and Forecasting (WRF) model with 
multi-layer urban canopy representation and daily satellite-derived boundary conditions for lake surface temper-
ature. These simulations are used to isolate the urban versus lake effect on the spatial variability of heat-related 
extremes within 77 community areas (neighborhoods henceforth) of Chicago during a typical summer (of 2018). 
We choose Chicago since it is a shoreline city (third largest among all US cities) to the west of Lake Michigan 
with a history of heat-related weather extremes (Conry et al., 2015; Kunkel et al., 1996). Previous studies have 
shown that the daytime breeze originating from Lake Michigan can penetrate 15–30 km inland, moving cooler 
and more humid air into Chicago during daytime, with an overall reduction in heat extremes (Conry et al., 2015; 
Keeler & Kristovich, 2012; Kunkel et al., 1996). However, these studies, and others that have investigated heat 
exposure in various shoreline cities (Roth et al., 1989; Wu et al., 2019; J. Yang et al., 2022), have mainly focused 
on skin or air temperature. Here, with the intent of focusing on physiologically relevant heat extremes, we also 
consider wet bulb globe temperature, the International Organization for Standardization (ISO) standard for occu-
pational heat stress (Iso, 2017) that considers the combined impact of air temperature, relative humidity, wind 
speed, and solar radiation exposure on human health (Heo et al., 2019). The neighborhoods in Chicago show 
large residential segregation, with the richest neighborhoods lying along the waterfront (Figure 1a). Thus, we also 
examine disparities in heat stress and heat exposure across these neighborhoods and how they are impacted by the 
lake-to-land gradients. Our results show that although the lake and urbanization distinctly impact the magnitudes 
and gradients of air and skin temperature, these impacts flatten out for wet bulb globe temperature. The overall 
variability of maximum and minimum wet bulb globe temperature within Chicago is strongly controlled by air 
temperature, though wind speed and relative humidity also play detectable roles. Furthermore, heat exposure 
disparities and their extremes are generally more prominent when using skin temperature instead of air and wet 
bulb globe temperature, indicating the importance of using physiologically relevant variables when quantifying 
these environmental inequities.

than disparities in air and wet bulb 
globe temperature
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2.  Methods
2.1.  Regions of Interest and Socioeconomic Data

Chicago is the third largest city in the United States, housing around 2.7 million people, and located on the south-
western side of Lake Michigan (Figure 1a). The city is affected by large pressure gradients during the summer 

Figure 1.  Study area and overview schematic. (a) Spatial extent of Chicago neighborhoods (inset marks location of Chicago within the United States) and the median 
income per capita in each. (b) Conceptual schematic of Chicago in reference to Lake Michigan and rural Illinois with daytime and nighttime (corresponding to MODIS 
Aqua overpasses) lake-to-land gradients in skin temperature, air temperature, and wet bulb globe temperature derived from the five-member ensemble mean of WRF 
models simulations and the proximity of the neighborhood centroids to the lake shore. The numbers annotated with the colored gradients show the slopes of the best fit 
lines in °C per km distance from Lake Michigan. Note that the x-axis is reversed here (compared to Figure 4) for consistency with the schematic. The representation of 
Chicago is purely illustrative and not to scale.
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due to the differential heating over the city and over Lake Michigan, resulting in strong lake breeze during the 
day (Laird et al., 2001). To examine spatial variability across this city, we consider the 77 community areas, 
which are commonly used to provide statistical summaries and for urban planning (Figure 1a). Each commu-
nity area includes estimates of median income per capita (corresponding to U.S. census data for 2008–2012), 
which we extract from the City of Chicago's data portal (https://data.cityofchicago.org/). Since income is not a 
comprehensive proxy for vulnerable populations, we also consider the Hardship index, a more relevant metric 
of socioeconomic vulnerability  that includes contributions from six factors—namely unemployment, lack of 
secondary education, per capita income, percentage population below poverty level, overcrowded housing, and 
age dependency—after normalization (Amdat, 2021). Overall, both Hardship index and median income show 
similar spatial variability, with northern lakefront neighborhoods showing highest median income per capita and 
lowest Hardship index (Figure 1a; Figure S4a in Supporting Information S1).

2.2.  Model Simulations

We use Weather Research and Forecasting (WRF; version 4.3.1) model simulations (Skamarock & Klemp, 2008) 
centered at 45.5°N and 85.0°W and covering the Great Lakes region with a grid spacing of 4 km and 50 stretched 
vertical levels starting from 30.2 m above the ground (J. Wang et  al.,  2022) to simulate summertime condi-
tions in Chicago. The initial and boundary conditions for the model (at 0.25° resolution every 3 hr) are taken 
from the European Centre for Medium-Range Weather Forecasts atmospheric reanalysis of the global climate, 
version 5 (ERA5) (Hersbach et al., 2020), while the boundary condition for the lake surface temperature (daily at 
1.3 km) is from satellite-derived estimates from the National Oceanic and Atmospheric Administration (NOAA) 
Great Lakes Surface Environmental Analysis (Schwab et al., 1992). The model is run with the Rapid Radia-
tive Transfer Model (RRTM) (Iacono et al., 2008) for shortwave and longwave radiation, the Yonsei University 
(YSU) planetary boundary layer scheme (Hong & Lim, 2006), revised Atmospheric Research Mesoscale Model 
Monin-Obukhov surface layer scheme (Jiménez et al., 2012), Thompson microphysics (Thompson et al., 2004), 
and the Unified Noah land surface model (Noah LSM) (F. Chen & Dudhia, 2001).

We run the model in three separate configurations: one corresponding to the present-day conditions (control), 
and two counterfactual scenarios with Lake Michigan (no lake) and Chicago urban grids (no urban) removed, 
respectively. For the control simulation, we use the latest multilayer urban canopy model (MLUCM) in WRF with 
Building Effect Parameterization (BEP) (Martilli et al., 2002) and Building Energy Model (BEM) (Salamanca 
et al., 2010). Together, BEP and BEM can represent the building impact on airflow and the exchange of energy 
between buildings and their surroundings. Grid-wise land cover is provided to the model from Moderate Reso-
lution Imaging Spectroradiometer (MODIS) land cover with 21 classes, which WRF uses by default. The urban 
grids correspond to the high-density class of the MLUCM and have a fixed built-up fraction of 0.9. To examine 
the impact of urbanization and lake, respectively, the urban Chicago and Lake Michigan grids are replaced by 
cropland, the dominant land cover in the region. Thus, the difference between the control and no urban simula-
tion provides the local urban effect, while the difference between the control and no lake simulation gives us the 
effect of Lake Michigan. This replacement of one surface type with another to examine the impacts on climate is 
a common approach in numerical modeling (K. Huang et al., 2021; Sarangi et al., 2021; Theeuwes et al., 2013). 
In contrast, for observational studies, such as those on urban heat islands, where a similar replacement of surface 
type is not methodologically possible, space-for-time substitution approaches are used instead, generally by 
defining buffers surrounding the urban area to serve as a rural reference (Q. Yang et al., 2023). This is because 
considering regions farther away (say, the other side of Lake Michigan) as a background reference would result 
in differences not just due to surface type, but also due to synoptic-scale processes.

All the model configurations are run five times with different initializations 12 hr apart between 12 May 2018 and 14 
May 2018 and the simulations are run till 1 September 2018 (J. Wang et al., 2023). The five different initializations 
form an ensemble and are meant to test the sensitivity of the results to initial conditions. The results for the 3 months 
of summer (June, July, August) are used in the study. The WRF outputs are at hourly resolution for each model grid.

2.3.  Calculating Heat Indices

We estimate heat indices from the model simulations to represent human physiological response to heat extremes. 
First, we calculate wet-bulb temperature, a thermodynamic measure of humidity in a parcel of air, which is 
often used as a proxy for heat stress in climate studies (Im et  al., 2017; Raymond et  al.,  2020; Sherwood & 
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Huber, 2010) using an iterative approach (Stipanuk, 1973). We also compute wet bulb globe temperature, which 
is the ISO (International Organization for Standardization) standard for occupational heat stress (Iso, 2017), using 
the following empirical equation (Ono & Tonouchi, 2014):

WBGT = 0.735 × AT + 0.0374 × RH + 0.00292 × AT × RH + 7.619 × SR − 4.557 × SR2

−0.0572 × WS − 4.064� (1)

where WBGT is in °C, SR is the solar insolation at the surface (in kW m −2), WS is wind speed at 10 m (in m s −1), RH 
is the 2-m relative humidity (in %), and AT is the 2-m air temperature (in °C). Wet-bulb temperature generally has a 
stronger dependence on humidity than other heat stress metrics (Chakraborty et al., 2022), and is not strongly linked 
to health outcomes till physiological thresholds are reached (Sherwood, 2018). Moreover, these physiological thresh-
olds assume no energy input (such as from solar radiation) into the human body and continuous gale force winds, 
which is quite unrealistic. Since urbanization and the lake both impact wind speed, and solar exposure is expected 
under most outdoor conditions during daytime, wet bulb globe temperature is a more complete indicator of outdoor 
heat stress (Heo et al., 2019), which we focus on when describing the results. The overall patterns found in the study 
are similar when using wet-bulb temperature, with this variable showing even weaker associations with distance 
from the coast and income than wet bulb globe temperature (Figures S1, S3, and S4 in Supporting Information S1).

2.4.  Data Processing at Neighborhood-Scale

Average diurnal cycles are generated for all relevant variables (air temperature, relative humidity, wet bulb globe 
temperature, wet-bulb temperature, and skin temperature) from the hourly model outputs for summer 2018. From 
these cycles, the highest and lowest values are extracted for each grid, representing the maximum and minimum 
value for the average summer day in 2018, and summarized for each of the community areas. Similarly, the 95th 
and 98th percentile of these variables are also extracted from the hourly outputs and combined to create summa-
ries for each geographic aggregation.

To check the consistency of patterns with observations, we also extract satellite data for summer 2018 over 
Chicago and summarize for the same regions. Satellite-derived skin temperature (more commonly called land 
surface temperature; LST) is from 8-day composite 1  km MODIS observations on board the Aqua satellite. 
Pixel-level quality control flags are used to only keep data with an uncertainty of less than or equal to 3°C, 
following previous studies (Chakraborty et al., 2020). Note that this uncertainty relates to the algorithm used to 
estimate LST from MODIS observations in the thermal bands; and is different from the sources of uncertainty 
in the coupled model simulations (see Sections 2.7 and 3.6). The Aqua overpass for day and night are at around 
1:30 p.m. and 1:30 a.m. local time, respectively, which is not the same as the time of the maximum and minimum 
average skin temperature. For a more accurate comparison, WRF-simulated skin temperatures corresponding to 
these overpasses (1–2 p.m. local time for daytime; 1–2 a.m. for nighttime) are estimated from the control runs 
(Figure 1; Figures S1 and S2 in Supporting Information S1). We also calculate the normalized difference vege-
tation index (NDVI), a proxy of live green vegetation at the surface (Rouse et al., 1974), from MODIS surface 
reflectance product. The NDVI is calculated as:

NDVI = (NIR − RED)∕(NIR + RED)� (2)

where NIR is the reflectance in the near-infrared and RED is the reflectance in the red band. Only the best quality 
pixels are selected before calculating the NDVI. For both skin temperature and NDVI, we also mask out all pixels 
corresponding to surface water (at 30 m resolution) from the Global Surface Water data set (Pekel et al., 2016) 
since the urban grids in WRF do not include any surface water fraction. All satellite remote sensing and geospa-
tial data processing are done on the Google Earth Engine platform (Gorelick et al., 2017).

2.5.  Factor Analysis Using Gridded Model Simulations

We examine the impact of different factors in Equation 1 on spatial variability of maximum and minimum aver-
age wet bulb globe temperature. For this, the factors (AT, RH, WS, and SR) corresponding to the time of these 
maximum and minimum average WBGT values are extracted for each grid overlaying Chicago from the control 
simulations. Then, multiple linear regressions are used to express wet bulb globe temperature (maximum or mini-
mum average) as a function of its factors:

WBGT = 𝛽𝛽0 + 𝛽𝛽1AT + 𝛽𝛽2RH + 𝛽𝛽3WS + 𝛽𝛽4SR� (3)
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where β0 is the intercept and β1, β2, β3, and β4 are the regression coefficients of air temperature, relative humidity, 
wind speed, and solar radiation, respectively. These coefficients give the sensitivity of wet bulb globe temperature 
to a unit change in the associated factor, assuming other factors are held constant. Overall, the magnitude and 
direction of these coefficients give an estimate of the strength and direction of association between the factor and 
wet bulb globe temperature. Since the factors have different range of values, which would impact the regression 
coefficients, we provide a second perspective by also computing similar sensitivities after rescaling all factors 
to lie between 0 and 1. In this scaled case, the relative importance of factors estimated purely due to the unit 
used is accounted for. Note that this method assumes linear independence of the factors. In reality, some of these 
factors are not independent. For instance, increasing air temperature would reduce relative humidity even if the 
total moisture content of the air remains constant. This potential collinearity between the factors should be kept 
in mind when assessing the results. However, that air temperature is vastly more important for wet bulb globe 
temperature is seen in the regression coefficients found here (see Section 3) and also easily interpretable from the 
coefficients in Equation 1.

2.6.  Extracting Crowdsourced Weather Data in Chicago

The model configuration used here have been evaluated against buoy measurements and in situ measurements 
throughout the Great Lakes Region in a previous study (J. Wang et al., 2023). However, in that study, the focus 
was more on day-night patterns and overall accuracy rather than spatial variability within Chicago. Since urban 
areas rarely have standard weather stations, our primary evaluation of the modeled skin temperature uses satel-
lite observations. However, with the intent of capturing both the magnitude and the spatial variability of other 
relevant variables important for heat stress, we also extract all citizen science weather station data in Chicago 
that have data covering the full period of summer, 2018. These data are measured by outdoor personal weather 
stations from Netatmo, a manufacturer of smart home devices (Venter et al., 2021). Although only five such 
stations exist within Chicago (Figure S3a in Supporting Information  S1), they are more spread out than the 
airport weather station data normally used for such model evaluations (Tan et al., 2022). We calculate the maxi-
mum and minimum average air temperature and relative humidity from each of these stations for summer 2018 
and examine associations between these values and the corresponding neighborhood-level estimates from the 
five-member ensemble mean of the WRF control simulations.

2.7.  Model Evaluation and Uncertainties

Though we evaluate our WRF-simulated variables against satellites observations after aggregating to the neigh-
borhood scale (see below and Figures S1 and S2 in Supporting Information S1), against both buoy and in situ 
measurements to examine diurnal patterns (J. Wang et al., 2023), and against crowdsourced measurements to test 
for spatial variability (see below and Figure S3 in Supporting Information S1), it is important to stress the uncer-
tainties in both our model estimates and the evaluations. On the modeling side, WRF cannot fully capture the 
spatial variability of a heterogenous city like Chicago (Qian et al., 2022). For instance, the urban density classes 
have fixed radiative and thermodynamic parameters. Moreover, street-level urban vegetation is not explicitly 
represented, which can modulate wind speed, air temperature, and surface moisture budget, especially evapo-
transpiration and thus relative humidity (Krayenhoff et al., 2020). Urban hydrology is also poorly represented in 
WRF, with no real subsurface drainage, which would also impact relative humidity. On the evaluation side, while 
WRF-simulated skin temperature is integrated over an idealized 3D urban canyon, satellites provide a 2D direc-
tional view of a 3D heterogeneous urban landscape for clear-sky conditions (Du et al., 2023; Stewart et al., 2021). 
Thus, some differences in magnitude between skin temperatures from MODIS and WRF are expected, especially 
for grids with higher urban density. Finally, the citizen weather station measurements represent information about 
a much smaller footprint than the WRF grids.

With these uncertainties in mind, the WRF-simulated and MODIS-observed daytime estimates show a correla-
tion of 0.29, mean bias error of −2.4°C, and a slope of the line of best fit close to unity (Figure S2a in Supporting 
Information  S1). The impact of the vegetation representation in WRF is also evident during daytime, as the 
difference between modeled and observed skin temperature is positively correlated with normalized difference 
vegetation index (NDVI; Figure S2c in Supporting Information S1), which is a proxy for live green vegetation 
at the surface (Rouse et al., 1974). At night, however, the model cannot capture the variability of observed skin 
temperature across neighborhoods, showing a negative correlation with an r 2 value close to 0 (Figure S2b in 
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Supporting Information S1). This discrepancy between modeled and observed nighttime skin temperature is also 
evident from the opposite direction of the lake-to-land gradient in Figure 4 and the opposite associations with 
median income (Figure 7b; Figure S8 in Supporting Information S1). In addition to differences caused by the 
satellite view of the 3D urban landscape providing a directional estimate of clear-sky skin temperature (unlike 
the WRF simulated value, which is integrated over the urban facades and accounts for all sky conditions), we 
note that satellite-derived values have a more continuous distribution than the simulated values (Figure S2a in 
Supporting Information S1). This makes sense since the skin temperature is strongly constrained by the surface 
energy budget, which, in turn, is constrained by the prescribed parameters of urban surfaces. These parameters 
being fixed in WRF (Chakraborty et al., 2021; Z.-H. Wang et al., 2011), the spatial variability of simulated skin 
temperature is also similarly limited, leading to the distinct clusters seen in Figure S2a of the Supporting Infor-
mation S1 during daytime. This issue is of less importance for air temperature, which we further evaluate below, 
since it is well-mixed through horizontal advection.

While the sample size is small, for evaluations of simulated maximum and minimum average air temperature and 
relative humidity against weather station measurements, positive correlations are seen in all cases other than for 
minimum average air temperature (Figure S3 in Supporting Information S1). For air temperature, the mean bias 
errors are less than 0.5°C, while the errors are higher for relative humidity. Minimum average relative humidity, 
which is during daytime, is largely underestimated by WRF even though the general spatial pattern is captured. 
This is potentially also related to the lack of explicit vegetation representation and hydrology within the urban 
grids, which would impact the near-surface relative humidity simulated by the model. In comparison, the personal 
weather stations are generally not set up over impervious surfaces, but rather in lawns and backyards, which 
would have higher relative humidity. Finally, moisture emissions from anthropogenic activities are also poorly 
represented in models (X. Huang et al., 2021; Z. Wang et al., 2021), which would also impact relative humidity. 
We stress that these evaluations are done more as a sanity check than to confirm the “truth” represented by the 
model simulations. See the relevant discussions about the uncertainties earlier. However, the model simulations 
are helpful for capturing the relative changes among the different variables (air temperature, skin temperature, 
wet-bulb temperature, and wet bulb globe temperature) to perturbations like the presence of the lake or built-up 
areas since many of the processes modulating these variables are explicitly simulated via the model physics.

3.  Results
3.1.  Urban Versus Lake Impacts on Heat Stress Across Neighborhoods

Disaggregating the WRF model simulations (control runs that include both urban and lake grids) into 
five-member ensemble mean summaries for Chicago neighborhoods, we find a lake-to-land gradient in skin 
temperature, air temperature, and relative humidity, particularly during daytime (Figures 1–3; Figures S4 and 
S5 in Supporting Information S1). For instance, summertime maximum average air temperature and minimum 
average relative humidity, both during daytime, increase and decrease, respectively, as we move away from the 
lake shore (Figure 2a; Figure S5d in Supporting Information S1). Maximum average relative humidity also shows 
a lake-to-land gradient, though minimum average air temperature has a weaker gradient (Figure 2a). Wet bulb 
globe temperature also shows a similar but weaker lake-to-land gradient (Figure 1b).

The urban and lake impacts on these variables are estimated through perturbation simulations where the built-up 
and lake grids are replaced with cropland (see Section 2). With some exceptions, air temperature and wet bulb globe 
temperature increase due to urbanization across neighborhoods. The urban impact is particularly evident at night for 
these variables. The stronger urban impact on minimum air temperature compared to maximum is in line with mode-
ling and observational estimates across cities (Qian et al., 2022; Sarangi et al., 2021; Venter et al., 2021). Urbanization 
appears to slightly reduce maximum average air and wet bulb globe temperature in the Near West Side, Near North 
Side, and the Loop neighborhoods (Figures 1a, 2b, and 2e). Urbanization also shows mixed impact on skin tempera-
ture according to the WRF simulations (Figures S4b and S5b in Supporting Information S1). Here, it should be noted 
that the surface of a multi-layer urban canopy is fundamentally different from that of a cropland grid, which is treated 
as a flat slab in the land-surface model, which could lead to some of these discrepancies. Finally, urbanization also 
reduces maximum and minimum relative humidity across most neighborhoods (Figures S1d and S5d in Supporting 
Information S1). The impact of Lake Michigan on the micro-climate of Chicago neighborhoods is more consistent, 
with general decreases in maximum and minimum temperature and heat indices (but with different magnitudes; see 
Section 3.2) and increases in relative humidity (Figures 2 and 3; Figures S4 and S5 in Supporting Information S1).

 24711403, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

H
000869, W

iley O
nline L

ibrary on [23/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GeoHealth

CHAKRABORTY ET AL.

10.1029/2023GH000869

8 of 20

3.2.  Lake-To-Land Gradients in Different Measures of Heat Exposure

To quantitatively assess the lake-to-land gradients, visually evident in Figure 2, we examine associations between 
the variables for each neighborhood and the distance of the centroid of the neighborhood from the lake shore 
(Figure 4). This distance is a bulk proxy of the lake effect, including the impact of horizontal exchange of heat 
and moisture via lake and land breezes. We also compare the lake-to-land gradients of the modeled variables 
(Figure 1b) with corresponding gradients of skin temperature measured by the Moderate Resolution Imaging 
Spectroradiometer (MODIS) sensor aboard NASA's Aqua satellite (Figure 4a). In Figure 4, the maximum and 
minimum values for the satellite estimates correspond to the satellite overpass times for daytime and nighttime 
(∼1:30 p.m. and ∼1:30 a.m. local time equatorial overpass), respectively, while in WRF, they are the actual 
modeled extrema (see Section 2). Although these associations can be non-linear, with stronger gradients seen at 
the land-water interface, we use linear models for easier interpretability of the results.

Overall, the maximum skin temperature in both the control model simulation and the MODIS observations show 
positive correlations with the distance from the shore with similar slopes (0.43 vs. 0.34; Figures 4a and 4b; all in °C 
per km), though the coefficient of determination is weaker for WRF (r 2 = 0.24 vs. 0.53 for MODIS). Note that these 
slopes are even closer (0.43 vs. 0.48; see Figure 1b) when WRF simulations corresponding to the MODIS overpass 
times are used (Figure 1b). For minimum (∼1:30 a.m. for MODIS) skin temperature, the data are generally uncorre-
lated. Although the maximum air and wet bulb globe temperatures also show positive slopes with the distance from 
the shore, the sensitivity decreases from skin to air to wet bulb globe temperature (0.34, 0.19, and 0.07, respectively).

The counterfactual scenario where the Chicago urban grids are removed has a large impact on the gradient of skin 
temperature (0.34–0.05), a smaller impact on air temperature (0.19–0.13), and practically no impact on wet bulb 

Figure 2.  Urban and lake impacts on maximum air and wet-bulb globe temperature. Neighborhood-scale summaries of WRF simulated maximum average (a) air 
temperature and (d) wet-bulb globe temperature for summer 2018 in Chicago. (b and e) Urban impact on maximum average air temperature and wet-bulb globe 
temperature, respectively. (c and f) Lake impact on those variables.
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globe temperature (0.07 for both and similar offsets; Figure 4d). The sign of the slope flips to positive from nega-
tive for maximum relative humidity. During nighttime (i.e., minimum values for all variables and maximum for 
relative humidity), the impact of urbanization is more evident, with the lake-to-land gradient strengthening for all 
cases. This suggests that the presence of Chicago counteracts the naturally expected lake-to-land gradient during 
nighttime. For the counterfactual scenario with no Lake Michigan, little impact is seen on minimum average vari-
ables compared to the control runs, but we see large offsets during daytime, with increases in air temperature and 
wet bulb globe temperature. Overall, it is evident that Lake Michigan has a stronger impact on heat exposure and 
heat stress in the region during daytime, while urbanization has a stronger impact at night. For almost all varia-
bles, the standard errors across the five ensemble members are greatest closest to the shore (Figure 4; Figure S6 
in Supporting Information S1), demonstrating the high sensitivity of the micro-climate at the land-water interface 
simulated by the model to initial conditions (J. Wang et al., 2022).

3.3.  Urban and Lake Impacts on Extremes Versus the Summer Climatological Mean

The previous analysis is indicative of the different sensitivities of the different measures of heat exposure and heat 
stress (air temperature and wet bulb globe temperature) to the distance from the water. However, these variables 
have different standard ranges, making the slopes not directly comparable. So, we calculate the absolute and 
percentage changes in the relevant variables due to urbanization and the lake within Chicago. Overall, the results 
seen in the sensitivity analysis are confirmed here (Table 1). Both percentage and absolute changes are higher 
for maximum average skin temperature than for maximum average air temperature during daytime and these 
changes are higher still than wet bulb globe temperature. The higher impact of urbanization on minimum average 

Figure 3.  Urban and lake impacts on minimum air and wet-bulb globe temperature. Neighborhood-scale summaries of WRF simulated minimum average (a) air 
temperature and (d) wet-bulb globe temperature for summer 2018 in Chicago. (b and e) Urban impact on minimum average air temperature and wet-bulb globe 
temperature, respectively. (c and f) Lake impact on those variables.
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air temperature (2.02°C; compared to 0.99°C for maximum) and maximum average skin temperature (2.55°C; 
compared to 1.24°C for minimum) is also captured. The higher urban impact on daytime skin temperature partly 
relates to the lack of evaporative dissipation of heat over pervious surfaces (Paschalis et al., 2021), while this 
additional stored heat gets gradually released at night into the near-surface air (Zhao et al., 2014). Finally, Lake 

Figure 4.  Lake-to-land gradients in measures of heat exposure. Associations between (a) MODIS Aqua daytime and nighttime skin temperature (more accurately, 
land surface temperature) and WRF simulated maximum and minimum average (b) skin temperature, (c) air temperature, and (d) wet bulb globe temperature in 
summer 2018 for 77 neighborhoods in Chicago and the corresponding distance of the centroid of each neighborhood to the lake shore. The points represent the mean 
values from the five members of the ensemble and the error bars correspond to standard errors across the members. The lines of best fit are shown and the associated 
equations, coefficients of determination, and p values are in the legend. The square symbols show the maximum averages (daytime for MODIS) and the triangles are for 
the minimum averages (nighttime for MODIS). The three colors (red, blue, and green) show the results for control, no lake, and no urban simulations, respectively.

Skin temperature (°C) Air temperature (°C) Wet bulb globe temperature (°C) Relative humidity (%)

Summer composite maximum

Urban Effect 2.55 (7.6%) 0.99 (3.7%) 0.08 (0.33%) −7.93 (−9.13%)

Lake Effect −0.98 (−2.63%) −2.75 (−9%) −0.86 (−3.39%) 5.66 (7.72%)

Summer composite minimum

Urban Effect 1.24 (7.17%) 2.02 (10.96%) 1.57 (9.1%) −7.23 (−13.9%)

Lake Effect −0.68 (−3.56%) −0.81 (−3.82%) −0.23 (−1.2%) 6.27 (15.08%)

Summer 98th percentile

Urban Effect 2.86 (7.09%) 1.84 (5.45%) 0.06 (0.2%) −3.2 (−3.29%)

Lake Effect −0.78 (−1.77%) 0.36 (−1%) −0.12 (−0.41%) 1.91 (2.08%)

Summer 95th percentile

Urban Effect 2.34 (6.13%) 2.29 (7.18%) 0.23 (0.81%) −3.42 (−3.62%)

Lake Effect −0.41 (−3.32%) −0.58 (−1.66%) −0.26 (−0.89%) 2.91 (3.3%)

Note. Summary of urban and lake effect on maximum and minimum averages and the 95th and 98th percentiles of skin 
temperature, air temperature, wet bulb globe temperature, and relative humidity in summer 2018 based on the five-member 
ensemble mean of WRF models simulations.

Table 1 
Impacts of Urbanization and Lake Michigan Within Chicago
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Michigan generally has a stronger impact on the measures of heat exposure during daytime (up to 9% reduction 
for maximum average air temperature) and weaker effects at night (less than 4% decrease in all cases).

We also examine changes (absolute and percentage) in the 95th and 98th percentile of these variables (from all 
hourly data) for the summer of 2018 due to the lake and urbanization (Table 1). Although the urban impact on 
the 95th and 98th percentile of air temperature is higher than that for the maximum average, the changes in wet 
bulb globe temperature extremes are lower. This is possible because as the air warms, all else remaining constant, 
the relative humidity will decrease, thus moderating heat stress. Considering the whole of Chicago, the 95th and 
98th percentiles of wet bulb globe temperature (28.6 and 29.8°C, respectively) exceed the high risk threshold 
(28°C) used by the U.S. military (Willett & Sherwood, 2012). However, we find a low impact of urbanization on 
summer heat stress extremes (upper bound increase of 0.23°C for the 95th percentile of summer wet bulb globe 
temperature). Finally, both urbanization and the lake have smaller effects on the 98th percentile of heat exposure 
and heat stress than on the 95th percentiles, suggesting a flattening of the upper tail of their distributions. It is 
important to note that our goal here was to examine the climatological extremes for these variables during a typi-
cal summer. Individual extreme heat events are usually much shorter (Tan et al., 2022) and influenced by regional 
and continental-scale synoptic processes during or before those periods.

3.4.  Changes in Other Factors and Contributors to Heat Stress

In addition to air temperature and relative humidity, wet bulb globe temperature is also a function of wind speed and 
solar insolation (see Equation 1 in Section 2). Urbanization can impact both of these variables. We examine diurnal 
median composites of wind speed and the shortwave radiation incident at the surface over the city from one of the 
members of the ensemble (Figure 5). As expected, wind speed peaks during daytime, with large spread across the grids 
overlaying Chicago, while nights are consistently calmer across these grids (Figure 5a). Overall, removing the urban 
grids increases median wind speed, particularly at night, which is expected due to the decreased surface roughness 
(from urban structures to cropland) (Qian et al., 2022; Zhao et al., 2014). During daytime, wind speed changes are less. 
This does not mean that the urban impacts are less. Instead, it is because the land-to-lake temperature gradients are 
decreased, which weakens the lake breeze. This effect partly compensates for the impeding effects of urban roughness. 
The role of both roughness and thermal gradients is also evident from the almost uniformly low wind speed throughout 
the day in the no lake simulation, when urban roughness effects are still active, and the lake (or rather, the croplands 
where the lake would have been)-to-land temperature differences are small (Figure 4b).

Incoming shortwave does not vary much across grids and shows minor changes across these simulations, with lowest 
value in the no lake run (Figure 5b). This is probably because of changes in cloud cover in the three simulations influ-
enced by changes in surface properties and moisture fluxes (J. Wang et al., 2022). We also look at the diurnal evolution 
of the boundary layer height across these grids for the three simulations (Figure 5c). This height is a proxy for the 
near-surface stability and overall convective efficiency over the city. Overall, we see low boundary layer height during 
stable nights, with large increases during daytime as the atmosphere becomes unstable. The boundary layer is highest 
in the no lake simulation, the inverse of what is seen for wind speed. An interesting feature is the growth of boundary 
layer after around 7 p.m. local time in both simulations with the multilayer urban canopy model. This is a consequence 
of the sensitivity of this boundary layer scheme to the prescribed addition of anthropogenic flux during that time. This 
bump disappears when a different boundary layer scheme is used (not shown).

Using multiple linear regressions, we examine relative importance of each factor considered when calculating the 
wet bulb globe temperature on the spatial variability of its maximum average and minimum average values over 
the Chicago grids. The linear models can almost perfectly capture the variability in wet bulb globe temperature, 
with adjusted R 2 of around 0.99 and 0.97 for the models of maximum and minimum wet bulb globe temperature, 
respectively. The relative importance is given by the regression coefficients, with the sign of the coefficients 
showing the direction of the associations (Figure 6). The signs are consistent with Equation 1 of the Methods, 
with wet bulb globe temperature increasing with air temperature, relative humidity, and solar radiation, and 
decreasing with wind speed. Across members of the ensemble, air temperature has the greatest role in controlling 
the spatial variability of both maximum and minimum average wet bulb globe temperature over the city at this 
scale. The second most important variable depends on whether the variables are scaled before the regression coef-
ficients are computed. For unscaled variables, wind speed is most important, while relative humidity becomes 
more important when the variables are scaled due to its much larger magnitude compared to wind speed. Solar 
radiation is generally the least importance, except for minimum average wet bulb globe temperature, which may 
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seem counterintuitive, but is because the minimum wet-bulb temperature can be right at dawn for some grids with 
some non-zero shortwave, which becomes relatively more important when the variables are scaled.

3.5.  Income-Based Disparities in Different Metrics of Heat Exposure

A reason for using neighborhood-scale summaries from the model simulations is to match them to socioeconomic 
data collected for the same geographic regions. Several studies have examined disparities in heat exposure in US 
cities using similar methodology, but focusing on satellite-derived skin temperature (Chakraborty et al., 2020; 
Hoffman et  al.,  2020; Hsu et  al.,  2021). Since skin temperature is less relevant to physiological response to 
heat than heat indices that combine multiple factors, we examine associations between skin temperature, air 
temperature, and wet bulb globe temperature against the median income per capita for Chicago (Figure 7). Over-
all, we see negative and statistically significant (p  <  0.05) relationships between income and the maximum 

Figure 5.  Diurnal variability of other relevant factors. Diurnal composites of (a) wind speed, (b) incoming shortwave radiation, and c boundary layer height in summer 
2018 across model grids overlaying Chicago. The upper and lower lines represent the 75% and 25% percentile (across grids) of the mean values, and the middle line is 
for the median, all by hour of the day. Results are shown for the first member of the ensemble of WRF simulations.
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summer averages of all these variables, suggesting lower peak heat exposure in richer Chicago neighborhoods 
(Figure 7a). However, the slope of these relationships is strongest for skin temperature (−1.29°C per $10,000 
higher median income per capita) and weakest for wet bulb globe temperature (−0.23°C per $10,000 higher 
median income per capita). This makes conceptual sense since air and wet bulb globe temperature are strongly 
affected by advection and the latter is also influenced by urbanization-induced drying (Chakraborty et al., 2022). 
Overall, we should be cautious about quantitative estimates of disparities in heat exposure based on skin temper-
ature. For minimum summer averages of temperature, the results show less consistency, with skin tempera-
ture showing a positive association with income and wet bulb globe temperature showing almost no association 
(Figure 7b). The nighttime associations with income are also not entirely consistent across model configurations, 
which partly relate to how anthropogenic heat is prescribed in WRF (see Section 3.6).

3.6.  Confirming Key Results With Different Model Configurations

We chose our default model configuration based on previous work done over the Great Lakes region, which was 
focused on improving prescribed boundary conditions for lake surface temperature and capturing near-surface 
climate over the lakes (J. Wang et al., 2022). Due to the sensitivity of urban climate to model complexity (Qian 
et al., 2022), we consider a couple of other configurations and run them for the control simulation. First, we run 
a five-member ensemble using the same configuration but using only the Noah LSM instead of BEP and BEM. 
Without the multi-layer urban canopy, the urban land is treated as a slab with modified surface properties with 
no explicit building impact on airflow or energy exchange. We also run a three-member ensemble with BEP and 
BEM, but using the Mellor–Yamada–Janjic (MYJ) scheme (Janjić, 1994), another commonly used boundary layer 
scheme in mesoscale models, instead of the YSU scheme. Finally, since the 4 km model grid is somewhat coarse, 
being similar in area to the community areas, we also set up a three-way nested domain (12–4 km–1.333 km) 
that can simulate finer-scale variability to examine consistency of our results, especially relevant for the disparity 
analysis using neighborhood-scale socioeconomic data. Only one ensemble member or simulation is done for the 
nested case due to computational bottlenecks for a full summer simulation.

Figure 6.  Sensitivity of wet bulb globe temperature to factors. Regression coefficients for air temperature (AT), relative 
humidity (RH), wind speed (WS), and incoming shortwave radiation (SR) from multiple linear regressions that explain spatial 
variability of (a) maximum and (b) minimum wet bulb globe temperature (WBGT) over the model grid overlaying Chicago. 
The error bars show the standard error across the five members of the ensemble. (c and d) are similar to a and b, but from 
regressions where all variables have been scaled to lie between 0 and 1.
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We consider the lake-to-land gradients in maximum and minimum average skin temperature, air temperature, 
and wet bulb globe temperature and the associated correlations with median income as the standard results for 
comparison. In all cases, the maximum average skin temperature, air temperature, and wet bulb globe tempera-
ture show a positive correlation with distance from the lake shore, a proxy for the combined impact of the lake 
and urbanization. More importantly, similar to our main results (Figures 1b and 4), the gradient is steeper for 
skin temperature than for air temperature, while wet bulb globe temperature shows the least gradient (Figure 8). 
Although different configurations show different magnitudes of the gradients, which is a function of both model 
configuration and the internal model variability in a coupled framework, the stronger sensitivity of skin tempera-
ture is consistently seen. Similarly, disparities in maximum heat exposure regardless of the measure used are seen 
across configurations (Figure 9). However, the magnitudes of the disparities are higher for skin temperature than 
for air temperature, and wet bulb globe temperature shows the least disparity.

For minimum average values, the results are mixed. For lake-to-land gradients, the sensitivities are slightly nega-
tive or close to zero in our default runs as well as using the MYJ scheme and the three-nested simulation (Figure 4; 
Figures S9b and S9c in Supporting Information S1). But the Noah LSM shows positive associations with the 
distance from the lake shore. This could be because of lack of explicit building effects in Noah LSM compared 
to the other configurations. Note, however, that the negligible gradient in wet bulb globe temperature is still 
captured by this configuration (Figure S9a in Supporting Information S1). Overall, for daytime, when heat stress 
would be maximum, our results show qualitatively consistent results regardless of model setup, physics schemes, 
and spatial resolutions, with similar lake-to-land gradients and associations with median income (Figures 1b, 4, 
7, 8, 9; Figures S9 and S10 in Supporting Information S1). Moreover, air temperature and heat stress show lower 
spatial variability than skin temperature, which makes conceptual sense and is in line with previous observa-
tional and modeling estimates at various scales (Chakraborty, Newman, et al., 2023; Chakraborty et al., 2022; 
Ho et al., 2016; Venter et al., 2021). However, we did find that the models configurations can give conflicting 
results for disparities in minimum average measures of heat exposure (Figure 7; Figure S10 in Supporting Infor-
mation S1), which requires better representation of nighttime urban processes in the model.

Figure 7.  Income-based disparities in different measures of heat exposure. Associations between WRF simulated (a) 
maximum and (b) minimum average skin temperature, air temperature, and wet bulb globe temperature in summer 2018 for 
77 neighborhoods in Chicago and the corresponding median income per capita. The points represent the mean values from 
the five members of the ensemble and the error bars correspond to standard errors across the members. The lines of best fit 
are shown and the associated equations, coefficients of determination, and p values are in the legend.

 24711403, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

H
000869, W

iley O
nline L

ibrary on [23/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



GeoHealth

CHAKRABORTY ET AL.

10.1029/2023GH000869

15 of 20

Figure 8.  Comparing lake-to-land gradients in maximum average of the variables across model configurations. Associations between maximum average skin 
temperature, air temperature, and wet bulb globe temperature in summer 2018 for Chicago neighborhoods and the corresponding distance of the centroid of each 
community area to the lake shore from WRF simulations with (a) NOAH land surface model, (b) MYJ boundary layer scheme, and (c) three-way nesting. The points 
represent the mean values (five-member ensemble for (a) and three-member ensemble for (b) and the error bars correspond to standard errors across the members when 
they are used. The lines of best fit are shown and the associated equations, coefficients of determination, and p values are in the legend.

Figure 9.  Income-based disparities in maximum average of the variables across model configurations. Associations between maximum average skin temperature, air 
temperature, and wet bulb globe temperature in summer 2018 for 77 neighborhoods in Chicago and the corresponding median income per capita from WRF simulations 
with (a) NOAH land surface model, (b) MYJ boundary layer scheme, and (c) three-way nesting. The points represent the mean values (five-member ensemble for a 
and three-member ensemble for (b) and the error bars correspond to standard errors across the members when they are used. The lines of best fit are shown and the 
associated equations, coefficients of determination, and p values are in the legend.
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4.  Discussion
The majority of the global human population lives near water bodies, whether in coastal areas or along fresh-
water shorelines (Crowell et al., 2007; Kummu et al., 2011). Similarly, large cities have frequently developed 
along the waterfront, with 14 of 17 global megacities (population >10 million) and around 40% of major cities 
(population between 1 and 10 million) being in coastal areas (Tibbetts, 2002). In 2010, ∼40% of the US popu-
lation lived in coastal shoreline counties (adjacent to the open ocean, major estuaries, and the Great Lakes), 
which had disproportionate long-term (1970–2010) area-adjusted population growth (∼3.5 times the nationwide 
average) (NOAA National Centers for Environmental Information, Climate at a Glance: Global Time Series, 
Published October 2021, Retrieved on 11 November 2021). These coastal areas will be major centers of future 
climate change impacts due to continuous population growth and vulnerability to flood risk, sea level rise, heat 
stress, and other extreme weather phenomena (Diffenbaugh et al., 2007; Hallegatte et al., 2013; Yin et al., 2009). 
In Chicago, our model simulations show that the presence of Lake Michigan reduces maximum and minimum 
heat exposure and heat stress over most neighborhoods during summer, with the effects generally strongest in 
neighborhoods adjacent to the lake shore. In contrast, urbanization increases most metrics of heat exposure, 
particularly during nighttime, with these increases intensifying with distance from the lake shore. However, both 
the model and satellite observations show stronger gradients of skin temperature away from the lake shore than 
of simulated air and wet bulb globe temperature. This makes sense because air and wet bulb globe temperatures 
are well-mixed, reducing thermal gradients compared to the surface, which is strongly constrained by the local 
surface energy budget. Similarly, the impact of urbanization on maximum average wet bulb globe temperature 
(Figure 2e), which is a standard metric of heat stress linked to health outcomes, is much lower than that on skin 
temperature. This is partly due to the compensating effect of humidity on heat stress (Chakraborty et al., 2022; 
Sarangi et al., 2021), which (humidity) is higher near the lake shore. The reduced variability (compared to skin 
and air temperature) seen for wet bulb globe temperature is also found for wet-bulb temperature (Figures S4–S7 
in Supporting Information S1; see Section 2), a thermodynamic measure of the moisture content of air, often 
used in the Earth sciences as a proxy for moist heat stress (Im et al., 2017; Raymond et al., 2020; Sherwood & 
Huber, 2010). These results are important for contextualizing the usefulness of open water for alleviating heat 
stress (Theeuwes et al., 2013), and the relevance of quantitative estimates of heat reduction and variability in 
heat exposure using satellite-derived skin temperature (Y. Chen et al., 2022; He et al., 2019; Manoli et al., 2019). 
Overall, studies examining public health implications should be careful when providing magnitude of changes 
for skin temperature, since these changes are not equivalent to changes in physiological metrics of heat stress 
(Chakraborty et al., 2022; Li et al., 2023; Turner et al., 2022).

Similarly, when examining disparities in different metrics of heat exposure across neighborhoods in Chicago, 
we find large differences in the sensitivities to median income. Skin temperature generally shows the strongest 
sensitivity to income, while wet bulb globe temperature shows the weakest association. This result is replicated 
when we look at associations between these variables (including wet-bulb temperature) and the Hardship index, 
a more comprehensive metric for structural urban inequity (Amdat, 2021) (Figure S7a in Supporting Informa-
tion S1; also see Section 2). The maximum summer averages of all variables generally increase with Hardship 
index, with the greatest sensitivity for skin temperature and the least for wet-bulb temperature (Figure S7 in 
Supporting Information S1). These results indicate the importance of examining disparities in physiologically 
relevant estimates of heat stress instead of satellite-derived skin temperature to accurately quantify urban envi-
ronmental inequities, which has also been noted in a nationwide study using a much simpler urban modeling 
framework (Chakraborty, Newman, et al., 2023). Although our study does show that using skin temperature, as 
done frequently in previous studies, may exaggerate the magnitude of disparities in heat exposure, it is important 
to stress that public health consequences of weather extremes depend on both exposure and vulnerability (Hsu 
et al., 2021). For heat stress, poorer populations are more vulnerable even when the exposure is identical. For 
instance, a working air conditioner, generally less available to lower-income populations (Romitti et al., 2022), was 
the strongest protective factor for heat-related death during the 1999 Chicago heat wave (Naughton et al., 2002).

Although the variability in air temperature due to Lake Michigan is consistent with previous estimates (Conry 
et al., 2015; J. Yang et al., 2022), the interactions between the lake and urbanization on heat stress and its dispari-
ties in Chicago are influenced by air temperature, relative humidity, and wind, with a distinct overall response for 
seasonal extremes (Table 1). These complexities makes it more difficult to predict future heat stress in Chicago 
and other coastal cities, with multiple factors coming into play, including additional drying and warming due to 
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urban expansion and increased onshore penetration by lake breezes (Conry et al., 2015). Accurately capturing 
these competing mechanisms requires not just better representations of cities and lakes in models, but also reason-
able estimates of dynamic changes in land cover, including urban greening and irrigation practices, which are still 
poorly constrained (Krayenhoff et al., 2020; Qian et al., 2020, 2022; Sharma et al., 2020; J. Wang et al., 2022), 
with currently unknown overall impacts on urban heat stress (Im et al., 2017). As we head toward a warmer, 
wetter, and more urbanized future (Lewis & Maslin, 2015; W. Wang et al., 2021), it is critical to continue to build 
these tools that can provide accurate and actionable data for urban climate adaptation and mitigation, especially 
to help vulnerable waterfront communities (Sharma et al., 2020).

5.  Conclusion
We examine the role of urbanization and Lake Michigan on different measures of heat exposure in Chicago using 
ensembles of weather model simulations. Urbanization increases heat exposure, while Lake Michigan decreases 
it. However, the degree of urban and lake impact on heat exposure depends on the metric or variable used. Skin 
temperature generally responds the most to urban and lake effects, while a physiologically relevant metric of 
heat stress like wet bulb globe temperature responds the least. This is because of the compensating impacts of 
humidity on wet bulb globe temperature. Overall, the competing mechanisms mean that lake-to-land gradients in 
maximum wet bulb globe temperature is much weaker than well-known gradients for air and skin temperature. 
Consequently, potential disparities in maximum ambient heat stress are less than what would be seen from satel-
lite observations or in air temperature alone. Our results demonstrate the importance of using appropriate metrics 
of heat stress to provide relevant quantitative estimates from urban heat monitoring efforts and for informing 
urban adaptation and mitigation strategies.
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