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A B S T R A C T   

A machine learning framework based on a multi-layer perceptron (MLP) algorithm was established and applied 
to wave forecasting in Lake Michigan. The MLP model showed desirable performance in forecasting wave 
characteristics, including significant wave heights and peak wave periods, considering both wind and ice cover 
on wave generation. The structure of the MLP regressor was optimized by a cross-validated parameter search 
technique and consisted of two hidden layers with 300 neurons in each hidden layer. The MLP model was trained 
and validated using the wave simulations from a physics-based SWAN wave model for the period 2005–2014 and 
tested for wave prediction by using NOAA buoy data from 2015. Sensitivity tests on hyperparameters and 
regularization techniques were conducted to demonstrate the robustness of the model. The MLP model was 
computationally efficient and capable of predicting characteristic wave conditions with accuracy comparable to 
that of the SWAN model. It was demonstrated that this machine learning approach could forecast wave condi
tions in 1/20,000th to 1/10,000th of the computational time necessary to run the physics-based model. This 
magnitude of acceleration could enable efficient wave predictions of extremely large scales in time and space.   

1. Introduction 

Surface waves are an important hydrodynamic component in coastal 
and ocean engineering designs. A general approach for determining 
design wave conditions is to estimate high quantiles given certain 
probabilities of exceedance in the distributions of long-term wave data 
using extreme value analysis or peak-over-threshold analysis (Soares 
and Scotto, 2007). However, these analyses often suffer from a scarcity 
of data because field observations of characteristic wave conditions (e. 
g., wave height and period) are usually conducted at few buoy stations 
for a short period of time. As such, wave hindcasting and forecasting 
become fundamentally important as they provide engineers and scien
tists with necessary long-term wave information to make planning de
cisions, design coastal structures, and assess coastal hazards. In addition, 
long-term wind wave databases are extremely valuable for assessing 
changing trends of the ocean wave climate (Chawla et al., 2013; Erikson 
et al., 2015), which can be obtained from wave hindcasting and 

forecasting using reliable wave models. 
Wave hindcasting and forecasting essentially predict characteristic 

wave heights and periods using readily available weather conditions, i. 
e., wind speed, storm duration, fetch length, and ice cover. Historically, 
parametric models, known as SMB methods, are developed for wave 
forecasting. These models include a set of empirical formulae that relate 
wave characteristics to wind conditions and water depth in the gener
ating area. They can provide efficient, but rough estimates of charac
teristic wave heights as well as wave periods for structural design 
purposes (Goda, 2010). The current practice of wave forecasting usually 
employs a numerical model for the computation of directional wave 
spectrum. The most popular ocean wave models are the third-generation 
spectral wave model WaveWatch III (Tolman et al., 2002) and the 
nearshore wave spectral model SWAN (Booij et al., 1999). WaveWatch 
III incorporates formulations for the deep-water wave processes, such as 
wave generation by wind, energy dissipation by whitecapping, and the 
quadruplet wave-wave interactions, and is applicable for deep-ocean 
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wave simulations at a global scale. On the other hand, the SWAN wave 
model is focused on wave transformation and deformation in shallow 
water. It incorporates shallow-water wave processes, such as wave en
ergy dissipation due to bottom friction and breaking, triad wave-wave 
interactions, and interactions between waves and ambient currents. 
These models were used for wave hindcasting and forecasting in studies 
including Mori et al. (2010), Chawla et al. (2013), Erikson et al. (2015), 
Kukulka et al. (2017), Niroomandi et al. (2018), and Allahdadi et al. 
(2019), to list a few. Although wave spectral models are capable of 
accurately simulating wave fields, they are computationally expensive. 

The machine learning (ML) approach was found capable of effi
ciently mapping large datasets to quantities of interest and have been 
widely used for forecasting in geosciences (Lary et al., 2016; DeVries 
et al., 2017), hydrology (Hong, 2008; Ahmad et al., 2010; Rasouli et al., 
2012), and engineering (Lee, 2006; Etemad-Shahidi and Bonakdar, 
2009; Etemad-Shahidi et al., 2011). For wave forecasting, due to a lack 
of large datasets for training, ML is used to forecast characteristic wave 
conditions at a few specific locations (Deo et al., 2001; Tsai et al., 2002; 
Gunaydin, 2008; Malekmohamadi et al., 2011). Recently, James et al. 
(2018) developed an ML framework for wave forecasting at a large 
domain in Monterey Bay. The ML algorithms were trained on a large 
dataset produced by the physics-based wave model SWAN. They found 
that the ML models yielded wave heights and wave periods consistent 
with the SWAN model. In addition, the ML models could dramatically 
accelerate wave simulations by more than 4000 times. O’Donncha et al. 
(2018, 2019) presented a framework that integrated physics-based 
models with an ML algorithm and combines forecasts from multiple, 
independent models into a single “best-estimate” prediction of wave 
conditions. They showed that the framework, which integrated 
data-driven and physics-based approaches, could outperform either 
technique in isolation. These studies demonstrated that ML is a prom
ising tool for improving wave forecasting at large spatial and temporal 
scales. 

This paper describes an ML framework based on a multi-layer per
ceptron (MLP) learning algorithm to hindcast and forecast characteristic 
wave conditions in Lake Michigan, where wave dynamics are signifi
cantly affected by ice coverage during the winter season. The MLP al
gorithm was selected for both wave height and period forecasting, which 
is a nonlinear regression problem that relates wave characteristics to 
weather conditions. The MLP algorithm was trained and validated using 
data hindcasted from a physics-based wave model (SWAN) for the 
period 2005–2014. Wave forecasting was performed for the year 2015 to 
examine the model performance. This study shows that the MLP 
approach can radically accelerate wave hindcasting and forecasting, 
while retaining predictive accuracy comparable to physics-based wave 
modeling. The paper is organized as follows. Section 2 presents the 
physics-based wave modeling and the quality of SWAN model results. 
The MLP algorithm is introduced in section 3. Training and validation of 
the algorithm, as well as its performance on wave forecasting in Lake 
Michigan, are also presented in this section. Section 4 discusses the 
performance of the MLP model on wave prediction considering multiple 
factors, e.g. length of training dataset, hyperparameters, and etc. The 
paper is concluded in section 5. 

2. Physics-based wave modeling 

2.1. SWAN model 

To obtain training and validation datasets for supervised MLP, wave 
simulations for Lake Michigan using the physics-based nearshore wave 
model SWAN v41.20 were completed. SWAN is a third-generation 
spectral wave model, developed at Delft University of Technology, 
that computes random/irregular, shore-crested wind-generated waves 
in coastal regions and inland waters (Booij et al., 1999). It solves the 
evolution equation of action density Nðx;!t; σ; θÞ in space x! and time t as 

well as wave-energy distribution over frequencies σ and propagation 
directions θ. The action density is defined as N ¼ E/σ, where E is the 
wave-energy density. The evolution of wave-action density is governed 
by (Komen et al., 1994): 

∂N
∂t
þr x! ⋅

��
c!gþ U!

�
N
�
þ

∂cσ N
∂σ þ

∂cθ N
∂θ
¼

Stot

σ ; (1)  

where U! is the current velocity vector, c!g ¼
∂θ

∂ k
! is the group velocity, k

!

is the wave-number vector, cσ and cθ are the propagation velocities in 
spectral space ðσ;θÞ, respectively. Stot accounts for wave energy sources 
and sinks, including wave generation by wind, wave decay due to 
whitecapping, bottom friction, and depth-induced wave breaking, and 
energy redistribution through nonlinear wave-wave interactions. 

2.2. Wind data 

In the SWAN wave model, high-quality wind inputs are critically 
important for wave simulations. In this study, the wind data Climate 
Forecast System Reanalysis (CFSR) (Saha et al., 2010, 2014) from the 
National Centers for Environmental Prediction were employed. The 
CFSR uses a coupled atmosphere-ocean-land surface-sea ice system with 
advanced data assimilation techniques and an extensive database of 
meteorological observations to create its products. The original CFSR 
dataset spans from 1979 to 2010 and the second version of the Climate 
Forecast System (CFSRv2) provides products from 2011 to present with 
several improvements over CFSR, such as a higher spatial resolution 
(Saha et al., 2014). The temporal resolution of CFSR wind is 6 h with
more detailed information available in Saha et al. (2010, 2014). At each 
time step, the SWAN modeling system automatically interpolated the 
CFSR dataset in time and space and interpolates the CFSR wind field of 
one time snapshot spatially on the SWAN grid domain for resolving Equ. 
(1). The CFSR wind data were also taken into the MLP for data training, 
validation, and prediction. In the MLP, the CFSR wind data were 
interpolated spatially onto a coarser grid (78 grid resolution), and are 
temporally assembled into one matrix. The detailed MLP algorithm is 
described in section 3.1. Fig. 1 is the schematic plot that illustrates the 
technical route of the ML framework. In Fig. 1, a SWAN model system of 
Lake Michigan was set up at first. The SWAN model was driven by the 
CFSR reanalysis wind fields and incorporated ice coverage information. 
These ‘features’, along with SWAN outputs of spatial variables (wave 
characteristics), were aggregated into training and validating datasets, 
which were supplied to machine learning models. 

2.3. Ice data 

Wind-driven waves in Lake Michigan can be significantly impacted 
by ice. To include the effect of ice, historical ice fields were incorporated 
into wave simulations by employing a technique that eliminated wave 
dynamics when ice coverage was higher than a threshold value. Previous 
studies implemented threshold values varying from 30 to 50% (Hubertz 
et al., 1991; Bennington et al., 2010; Anderson et al., 2015). In this study 
a threshold of 30% was selected, as suggested by Anderson et al. (2015), 
meaning that wave dynamics were not considered and the water depth is 
manually set to zero when ice coverage exceeded 30%. Historical ice 
data for the lake are accessible via NOAA Great Lakes Ice Atlas and Great 
Lakes Environmental Research Laboratory. The data have a horizontal 
resolution of ~2.5 km prior to 2007 and are upgraded to a resolution of 
~1.8 km in 2007. More details regarding the ice datasets are available 
(Assel et al., 2003, 2013; Assel, 2005). 

2.4. Model configuration and validation 

Wave simulations in Lake Michigan were performed from 1979 to 
2015; the 37 years when wind and ice data are available. Fig. 2 shows 
the computational domain of the SWAN model, along with the locations 
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of two NOAA buoy stations. Measurements of significant wave height 
(Hs) and peak wave period (Tp) at these two buoys were used to validate 
the SWAN model and the MLP framework. The bathymetric data in 
Fig. 2 were obtained from the NOAA National Geophysical Data Center 
and interpolated on the computational mesh grid. The computational 
mesh in Fig. 2 is curvilinear and comprised of 180 � 40 grid cells and 
181 � 41 grid points, including both overwater and overland grid 

points. In all simulations, wave energy dissipation mechanisms 
including whitecapping, depth-induced wave breaking, and bottom 
friction, were activated. The spectral domain was discretized into 12 
directions and 31 frequency bands. 

To develop reliable training data for the MLP model, it is important 
to demonstrate that SWAN can accurately replicate wave conditions in 
Lake Michigan. Long-term wave measurements at two NOAA buoy 

Fig. 1. Schematic plot of training and validation processes for wave forecasting using the multi-layer perceptron regressor (MLP) approach, in which reconstructed 
wave conditions in Lake Michigan modeled from SWAN served as the input (‘features’ in ML terms). 

Fig. 2. (a) Lake Michigan and the locations of two NOAA buoy stations, contour color represents bathymetry (in unit of m); (b) The computational mesh for the 
SWAN model. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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stations, 45002 and 45007, were used for SWAN model validation, 
spanning the entire 37 years of available data. For demonstration, the 
simulated and measured Hs and Tp at buoy stations 45002 and 45007 
were compared in Fig. 3. To quantify model performance, the bias (¼
1
N
PN

i¼1ðMi � SiÞ, where Mi is the measurement and Si is the simulation), 
the root-mean-square-error (RMSE), and the coefficient of determina
tion R2 at both buoy stations were evaluated for 2014. As demonstrated 
in Fig. 3, the model predicted the Hs quite well with R2 scores above 0.6 
and small biases and RMSEs, which are comparable to similar studies (e. 
g., Niroomandi et al., 2018; James et al., 2018; Allahdadi et al., 2019; 
Shi et al., 2019; Kutupo�glu et al., 2018; Kukulka et al., 2017; Akpinar 
et al., 2016). The model performance on Tp is relatively weak with low 
R2 scores. Considering small temporal variations in Tp, these scores are 
reasonable since the correlation coefficient measures the predicted 
proportion of the variance in the data. Additionally, the biases and 
RMSEs of the predicted Tp are acceptable (e.g. a bias of-0.006s for 45002 
and 0.267s for 45007), when compared to a SWAN simulation, and 
comparable to similar studies. 

From the aforementioned evaluations it could be argued that the 
SWAN model is capable of reasonably simulating temporal variations of 
Hs and Tp. In addition, the SWAN model has a lower utilization rate of 
computational resources when compared to a wave-resolving model. 
Discrepancies between the measurements and modelling results could 
arise from a variety of systematic errors, including measurement in
struments, modelling systems, and wind data. For instance, some large 
wave events were underestimated by the SWAN model. This underes
timation could possibly be caused by the coarse 6-h temporal resolution 
of the CFSR wind dataset (Saha et al., 2010, 2014). It is likely that 
certain large wind events are not captured by the data (e.g. Li et al., 
2016; Shi et al., 2019; Allahdadi et al., 2019). As a result, the wave 
heights during these events were underestimated. Additionally, the 
spatial resolution (0.3� for 1979–2010 and 0.2� for 2011-present day) 
would also cause underestimation of local wind-waves, particularly for 
locations close to the land boundary. Previous studies also reported the 
mismatches in Hs and Tp, even after calibration of the physics-based 
wave models (e.g. Allahdadi et al., 2019; Shi et al., 2019; Kutupo�glu 
et al., 2018; Kukulka et al., 2017; Akpinar et al., 2016). Compared to 
other datasets, such as the ERA-Intrim reanalysis data from ECMWF, 
CFSR shows better performance in wave modeling at North Atlantic and 
European shelves (e.g. Allahdadi et al., 2019; Kukulka et al., 2017; 
James et al., 2018). 

The distributions of SWAN-simulated yearly-averaged Hs and Tp are 
shown in Figs. 7a and 8a, which provide global portraits of the wave 
field over the lake. The yearly-averaged wave height is generally larger 
in the northern lake than that in the southern lake and higher in the deep 

water. The yearly-averaged Tp has low variations with around 4.0 s in 
most deep-water regions. The wave period is also longer in the northern 
lake and shorter in shallow water. 

2.5. Machine learning for wave forecasting 

The ML approach involves a set of statistical tools and algorithms for 
data modeling. Algorithms include linear and logistic regression, deci
sion trees and support vector machines boosting, multi-layer percep
trons, etc. Depending on whether there are targeted outputs, ML 
problems generally fall into two broad categories: supervised learning, 
in which the model is presented with inputs and targeted outputs, where 
it learns to map inputs (often called ‘features’ in ML terms) to outputs 
(often called ‘labels’ in ML terms); and unsupervised learning, where no 
outputs are given to the learning algorithm, and the goal is to find the 
structure in the inputs. Supervised ML applications can be further clas
sified into regression problems, which have a quantitative response or 
output, and classification problems, which typically have a qualitative 
or categorical response. 

It is obvious that wave forecasting is a supervised-regression prob
lem, which maps inputs, such as wind field and ice coverage, to output 
bulk wave parameters, such as Hs and Tp. In this section, an ML 
framework is developed to act as an efficient surrogate for the physics- 
based SWAN wave model (Fig. 1). The framework is based on the pop
ular Python library Scikit-Learn version 0.19.2. Several regression al
gorithms are available in Scikit-Learn, including linear regression, tree- 
based regressors (i.e., decision tree regressor, random forest regressor), 
and an MLP regressor. Wave forecasting is a nonlinear problem, thus 
linear regression is not appropriate for this application. In tree-based 
models, the predictor space is first divided into a number of distinct 
and non-overlapping regions. For every observation that falls into a 
certain region a corresponding prediction is made, which is simply the 
mean of the response values for the observation. Therefore, the MLP 
regressor is selected for the current application. 

2.6. Multi-layer perceptron 

MLP is a supervised learning algorithm that learns a nonlinear 
function and maps inputs to outputs by training on a dataset. Given a set 
of inputs X ¼ x1;x2;⋯;xR, and outputs y ¼ y1;y2;⋯;yS, where R is the 
number of inputs and S is the number of outputs, the MLP learns a 
nonlinear function approximator fð ⋅Þ : X→y for either classification or 
regression. The MLP consists of three or more layers (an input layer, an 
output layer, and one or more hidden layers). Each node in one layer 
connects with a certain weight to every node in the following layer. The 

Fig. 3. Comparison of measured and simulated (a,c) significant wave height, Hs and (b,d) peak wave period, Tp at (Left) buoy 45002 and (Right) buoy 45007 in year 
2014. Red lines represent SWAN modeled results and blue dots indicate measurements. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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inserted box with blue edgecolor on the upper right corner of Fig. 1 
shows the structure of an MLP regressor. The input layer consists of a set 
of neurons, with X representing the inputs. The rightmost layer is the 
output layer that receives information from the last hidden layer and 
transforms it into output values. Each neuron in the hidden layer ac
cumulates the values from the previous layer as a weighted linear 
summation with a bias, followed by a nonlinear activation function. For 
example, the output at the jth node of the first hidden layer is given by 

out¼ g

 
XR

i¼1
wjixi þ bj

!

; (2)  

where gð ⋅Þ is the nonlinear activation function, wji is the weight, and bj is 
the bias. There are various activity functions in the MLP regressor, 
including ‘identity’, ‘sigmoid’, ‘tanh’, and ‘relu’. This study selected the 
rectified linear unit (ReLU, or so called ‘relu’) (Nair and Hinton, 2010) as 
the activation function, which ensured no negative outputs. As tested 
during calibration, ‘relu’ outperformed the other activity functions due 
to less training- and validating-time; although, the accurate score was 
not significantly improved. 

gðZ Þ¼maxð0;Z Þ: (3) 

The MLP is trained by adjusting connection weights and biases based 
on the amount of error in the output compared to the expected result 
encapsulated in the loss function. This learning process is carried out 
through forward- and back-propagation and solved by the “adam” 
optimizer, which is an algorithm for optimization of stochastic objective 
functions, proposed by Kingma and Ba (2014). The method is straight
forward to implement and computationally efficient with little memory 
requirements. Moreover, it is also invariant to diagonal rescaling of the 
gradients and well suited for problems that are large in terms of data 
and/or parameters. The method is also appropriate for non-stationary 
objectives and problems with very noisy and/or sparse gradients, 
which makes it suitable for wave forecasting. 

2.7. Data preprocessing 

Input datasets (‘features’) of the MLP included wind field, water 
depth, and ice coverage of the lake area. The sources of wind from CFSR, 
bathymetric, and ice coverage data were presented in section 2. To 
improve training- and validation-efficiency, the size of X for the MLP 
regressor was reduced. In the MLP regressor, X was assembled by 10- 
year long wind and ice coverage data from 2005 to 2014. The recon
structed wave condition (Hs and Tp) from SWAN for 2005–2014 were 
used for training and validating the MLP regressor outputs y (Fig. 1). 
X ¼ ½U;V; M�, where U, V stand for the sub-matrices of wind component 
in the Cartesian coordinates, and M stands for the sub-matrix of ice 
mask, which combines ice coverage and bathymetry information. X had 
14,600 rows. The number of rows stand the number of snapshots for the 
10 years, which is exactly the number the SWAN timesnap outputs (4 
times/day x 365 days/year x 10 years). It was determined that a 10-year 
dataset is sufficient to create an efficient and an accurate MLP regressor 
for wave forecasting (refer to section 4). 

To further reduce the size of the input matrix, the wind data (uw and 
vw) are interpolated into a coarser grid, resulting in 78 wet grid points in 
Lake Michigan. Thus, the wind vectors are assembled into two sub- 
matrices: U and V; each one has a size of 14,600 x 78. This treatment 
could still obtain a good representation of the wind field in Lake 
Michigan because the spatial variation of wind was insignificant. 

The ice coverage sub-matrix M, which determines whether the wave 
dynamics are taken into account was generated as follows. First, 
bathymetric and ice coverage data were interpolated into the SWAN grid 
as shown in Fig. 2. In the MLP, the overland grid points are not 
considered, which could dramatically reduce the input dataset size. As a 
result, a total of 3893 overwater grid points in Lake Michigan are 
considered. In Fig. 1, naming S as the total number of overwater grid 

points, S ¼ 7421. Second, an ice-mask matrix was created. The size of 
the resulting ice-mask matrix (M) is 14,600� 3,893. Given an overwater 
grid point, the mask equals 1. If the ice coverage on the grid point is 
above 30%, the mask is set to 0. Thus, X had 4049 columns (78 for U þ78 
for V þ3893 for M). 

In practice, the input dataset must be preprocessed. Specifically, the 
wind speeds uw and vw were normalized and scaled using their means 
and standard deviations. The resulting wind inputs have zero means and 
unit deviations. No preprocessing of the ice-mask matrix and target- 
vector y is required. The preprocessed X and y were randomly shuffled 
into two subsets: training and validation. Selection of a portion of the 
matrices of X and y for validation was based on model performance. The 
portion was determined to be 0.2 for the model’s best performance (refer 
to section 4). Thus, the training dataset (X80%) is composed of 11,680 
rows of X, and the validation dataset (X20%) is composed of the 
remaining 2920 rows. 

In this study, the wave height and wave period models were con
structed and trained separately. The wave height model outputs signif
icant wave height ( Hs) and the wave period model outputs peak wave 
period ( Tp), following the SWAN outputs. The two bulk parameters are 
independent of each other physically and by setting up two separate 
models ensured both Hs and Tp could obtain better predictions. For 
both models, the target-vector y has dimensions of 14,600 rows (SWAN 
model runs) and 3893 columns (the number of wet grid points), where y 
is composed of either Hs or Tp. Accordingly, y is divided into two sub- 
matrices, y80% and y20%. The training dataset y80% has 11,680 rows, 
corresponding to X80%. The MLP algorithm was trained using the 
training dataset and then applied to the validation dataset to evaluate its 
performance. 

2.8. Training and validation 

2.8.1. Significant wave height 
The constructed MLP regressor for Hs was trained using the training 

dataset. As proposed in section 3.1, the stochastic gradient-based opti
mizer ‘adam’, proposed by Kingma and Ba (2014), was used after cali
bration. In the following results, the parameters of the MLP regressor 
were optimized by a cross-validated grid-search over a parameter grid, 
which is implemented by the GridSearchCV function in Scikit-Learn. 
These parameters, evaluated by GridSearchCV, and their optimized 
values are concluded in Table 1. The number of hidden layers, one, two, 
or three, and the number of neurons in each layer, ranging from 100 to 
500 in increments of 50, are interrogated. Results were evaluated by the 
R2 score and showed that two layers with 300 neurons per layer pro
duced the best fitting results. The sensitivity tests on the important pa
rameters of the MLP regressor are shown in section 4, such as 
early-stopping, learning rate, size of minibatch, stepsize (α), exponen
tial decay rates for the first and the second momentum estimates (β1, 
β2), etc. 

After training, the model performance was further evaluated using 
the validation dataset. In this procedure, the targeted wave height data 
in the validation dataset were not used. Instead, they were only used to 
calculate the error of the predicted Hs. The X20% were input into the 
trained MLP regressor to predict the wave heights for the entire Lake 
Michigan. Fig. 4a shows the cross-plot of spatially-averaged Hs from the 
SWAN wave model and the MLP model on the validation dataset over 
the entire lake. Clearly, the MLP model could reasonably replicate 
SWAN simulations. The RMSE, bias, and R2 score are 0.10 m, � 45.e� 04 
m, and 0.94, respectively. Fig. 4a indicates that the MLP model slightly 
overestimates wave heights under calm conditions when Hs is small. 
Yet, the current MLP model overall is not over fitted as dots are scattered 
in line with y ¼ x. 

2.8.2. Peak wave period 
The reconstruction of the Tp MLP model is similar to that of the Hs 
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MLP model. Using the GridSearchCV, it is determined that two layers 
with 300 neurons per layer still produced the best validation accuracy. 
The cross-plot of spatially-averaged Tp from the SWAN wave model and 

the MLP model for the validation dataset is presented in Fig. 4b. 
Compared to the SWAN results, the MLP model produces slightly higher 
estimations for small waves (<1 s) and lower estimations for large waves 
(>6 s). Further zoom-in analysis on a single node shows that SWAN 
overestimates Tp for long-period waves, while MLP produces results 
closer to the observations. On average, predictions of Tp from the MLP 
model are consistent with those from the SWAN model, as the bias be
tween the two is nearly zero. The RMSE, bias, and R2 score for spatially- 
averaged Tp are 0.48 s, � 0.004 s, and 0.75, respectively. 

2.9. Wave forecasting 

Although the MLP models have been tested against characteristic 
wave conditions in the validation dataset (Section 3.3), it is important to 
examine the performance of the model on wave forecasting. In this 
section, the constructed MLP models are applied to forecast wave con
ditions for 2015. The wind and ice coverage data were preprocessed in 
the same way as detailed in section 3.2. The measurements at two NOAA 
buoy stations and the SWAN hindcasted wave conditions were used to 
examine the performance of the MLP models. Fig. 5 shows the com
parisons of Hs and Tp from the MLP model and the SWAN model to the 
measurements for year 2015. The measurement data are missing beyond 
around day 325 for buoy 45002 and day 335 for buoy 45007. The MLP 
model reasonably predicts the temporal variations of Hs observed at 
both 45002 and 45007. For example, the biases between MLP and ob
servations of Hs are 0.11 m at 45002 and 0.13 m at 45007 and the biases 
of Tp are 0.17 s at 45002 and -0.18 s at 45007, respectively. In addition, 
the performance of the MLP model for wave forecasting is comparable to 
that of the SWAN model at both buoys (Fig. 5). 

The spatially averaged MLP model predictions are also compared 
with wave forecasting by the SWAN model for the entire lake. The 
correlations between the spatially-averaged MLP model and the SWAN 
predictions are presented in Fig. 6, which indicates that the forecasted 
wave conditions by the MLP and SWAN models are closely correlated 
and fairly similar. The bias and R2 scores between two predictions were 
� 0.014 m and 0.92 for Hs and � 0.010 s and 0.79 for Tp, respectively. 

The comparisons of yearly-averaged Hs and Tp from the SWAN wave 
model and the MLP model are demonstrated in Figs. 7 and 8. The pre
dicted yearly-averaged Hs and Tp from the SWAN and MLP models have 
similar spatial distributions, except that the SWAN predictions appear 
more evenly distributed in space. The MLP predictions on wave height in 
the northern and eastern lake are slightly smaller than the SWAN sim
ulations, while wave height predictions by the MLP model are larger in 
the southern lake. The differences between these two model predictions 

Table 1 
Scikit-Learn MLP regressor parameters optimized and used in this study.  

Parametersa Values tested in GridSearchCV Optimized Value 

solver ’adam’ ’adam’ 
hidden_layer_sizes (100,100),...(350,350),(400,400) (300,300) 
activation ’identity’,’relu’,’tanh’, ’sigmoid’ ’relu’ 
alpha 0.1,0.01,0.001,0.0001,0.00001 0.0001 
beta_1 0,0.5,0.9 0.9 
beta_2 0.99,0.999,0.9999 0.999 
batch_size 100,200,300,400 200 
early_stopping TRUE, FALSE FALSE 
validation_fraction 0.1,0.2,0.3,0.4,0.5 0.2 
learning_rate ’constant’, ’invscaling’, ’adaptive’ ’adaptive’ 
max_iter 100,200,300,400 100 
learning_rate_ini 0.01,0.001 0.001 
epsilon ¼ 1e-08 0.00000001 0.00000001 
shuffle TRUE TRUE 
random_state None None 
tol 0.0001 0.0001 
verbose FALSE FALSE 
warm_start FALSE FALSE 
n_iter_no_change 10 10  

a Note the meaning of each parameter listed in the table is as follows: olver: 
the solver for weight optimization,‘adam’:the option representing a stochastic 
gradient-based optimizer proposed by Kingma and Ba (2014), hidden_layer_
sizes: the number of neurons in the ith hidden layer, activation: activation 
function for the hidden layer, alpha: L2 penalty (regularization term) parameter, 
beta_1: exponential decay rate for estimates of the first moment vector in adam, 
should be in [0, 1], beta_2: exponential decay rate for estimates of the second 
moment vector in adam, should be in [0, 1), betch_size: size of minibatches for 
stochastic optimizers, arly_stopping: terminate the training when validation 
score is not improving, validation_fraction: the proportion of training data to set 
aside as the validation set, learning_rate: the learning rate schedule for weight 
updates, max_iter: maximum number of iterations, learning_rate_ini: the initial 
learning rate, epsilon: the value for numerical stability in adam, shuffle: whether 
to shuffle samples in each iteration, random_state: if none, the random number 
generator is the RandomState instance used by np.random, tol: tolerance for the 
optimization. When the loss or score is not improving by at least tol for 
n_iter_no_change consecutive iterations, unless learning_rate is set to ‘adaptive’, 
convergence is considered to be reached and training stops.,verbose: whether to 
print progress messages to stdout, warm_start: when set to True, reuse the so
lution of the previous call to fit as initialization; otherwise, just erase the pre
vious solution, n_iter_no_change: maximum number of epochs to not meet tol 
improvement. For the ones not listed, they are either not important and are 
taken as default by the model or not used when using ‘adam’ for solver. 

Fig. 4. Cross plots of spatially-averaged (a) significant wave height Hs and (b) peak wave period Tp over Lake Michigan, modeled by SWAN and output from the MLP 
model during validation process. The thin black line indicates the 1:1 line and the blue line indicates the best-fitting line. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.) 
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are generally less than 0.1 m. In terms of Tp, the SWAN predictions are 
slightly longer in the northern lake near the islands. In most deep water 
regions, the differences of the yearly-averaged Tp between the two 
models are less than 0.5 s. Generally, the MLP model has better pre
dictions in open deep water and poor predictions in shallow water. This 
is because the MLP model could not capture the wave processes around 
islands and shoreline in the shallow water, such as wave shoaling, 
refraction, and diffraction. 

3. Discussions 

The MLP approach was proved to be a promising tool for wave 
forecasting in Lake Michigan as explained in the previous section. In this 
section, we present the sensitivity tests on the factors and hyper
parameters that are important in the MLP regressor, including the length 
of the input dataset X (‘features’), the fraction of X necessary for 
training/validation, the early-stopping option, the mini-batch size, the 
learning rate, and other hyperparameters (α;β1;β2). 

One challenge to applying such ML approaches to other water bodies 
is their enormous appetite for data (James et al., 2018). Thus, the effect 
of data length for training and validation on the MLP model was first 
assessed. Fig. 9 shows the accuracy scores versus data length for the total 
training and validation data in years. The hindcasted dataset from the 

SWAN model for the period 2005–2014 was used here and the training 
and validation dataset are randomly picked from the entire 10-year long 
dataset. For example, in Fig. 9, the 1 year-long dataset stands for 1/10 of 
the 10-year long dataset. In these tests, the MLP model had the same 
structure with two hidden layers and 300 neurons in each hidden layer. 
The accuracy score was evaluated by R2 calculated on the validation 
dataset, which accounts for 20% of the total training and validation 
data. It was shown that if the training and validation data length was less 
than 6 years, the accuracy score fluctuated between 0.79 and 0.81. If the 
training and validation data length was more than 7 years, the accuracy 
score was improved to between 0.85 and 0.87. Therefore, a 
sufficiently-long dataset should be needed for training of the MLP 
model. 

Second, we assessed the accurate score and computational efficiency 
with and without early-stopping (Fig. 10). The computational efficiency 
was quantified by the ratio of ttotal � tload

tload
, where tload represents the time for 

loading data and ttotal represents the total time for training and valida
tion in the MLP model. The computational efficiency increased as the 
ratio decreased. A series of tests were conducted with a set of fractions of 
X for validation (right panel of Fig. 10) and with varied sizes of mini- 
batch (left panel of Fig. 10), while keeping other parameters fixed. For 
the joint tests on fractions of X for validation, fractions were tested at 
0.1, 0.2, 0.3, 0.4, and 0.5, while the mini-batch size was kept as 200. For 

Fig. 5. Comparisons of (a,b) significant wave height Hs and (c,d) peak wave period Tp at two NOAA buoy stations from MLP and SWAN modeled wave forecasting in 
year 2015 to observations. Red lines represent MLP predictions, green dashed lines indicate SWAN predications, and blue dots indicate observations. (Left panel: 
buoy 45002 and Right panel: buoy 45007). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. Cross plots of spatially-averaged (a) significant wave height Hs and (b) peak wave period Tp over Lake Michigan, predicted by the SWAN wave model and the 
MLP model in year 2015. The thin black line indicates the 1:1 line and the blue line indicates the best-fitting line. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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the joint test on mini-batch sizes, the mini-batch sizes were 100, 200, 
300, 400, and 500. The fraction was set to 0.1 in the joint tests on mini- 
batch sizes. For the other parameters, activation ¼ ‘relu’, α ¼ 0.001, β1 
¼ 0.9, β2 ¼ 0.999, epsilon ¼ 1e-08, hidden_layer_sizes¼(300,300), 
learning_rate ¼ ‘constant’, learning_rate_init ¼ 0.001, max_iter ¼ 400, 
power_t ¼ 0.5, random_state ¼ None, shuffle ¼ True, solver ¼ ‘adam’, 
tol ¼ 0.0001. 

As shown in Fig. 10, for both fraction tests and mini-batch tests, 
when the early-stopping was ‘false’, the accurate score was larger (above 
0.85). However, the computational efficiency showed no suggestive 
results. Judging from the fact that the total time for training and vali
dation are short, in the range of 50–90 s, it was highly suspected that the 
processing and memory of the computers cast bigger impacts on the 
computational time ratio than that caused by the early stopping option 
in the MLP regressor. 

Within the fraction tests, when the fraction of X for validation 
equaled 0.2, the accurate score was the highest; although, neither the 

accurate score nor the computational efficiency was very sensitive to the 
fraction. Using multi-year data in 6-h time-resolution for composing X, 
the model was well-trained even when the fraction reached 0.5. Within 
the tests on sizes of mini-batch, it was determined that the accurate score 
was not sensitive to sizes of mini-batch; whereas, the computational 
time dropped when the size of the mini-batch was over 300. It was found 
that a mini-batch size of 200 produced higher accurate scores. 

Third, we tested the sensitivity from different learning rates of the 
MLP regressor on the accurate score and computational efficiency 
(Fig. 11). There are three options: ‘constant’, ‘adaptive’, and ‘invscal
ing’. The ‘constant’ is a constant learning rate given by the initial value 
and ‘adaptive’ keeps the rating rate constant to the initial value as long 
as the training loss keeps decreasing. The ‘invscaling’ represents grad
ually decreasing the learning rate at each time step using an inverse 
scaling exponent of a certain value defined by ‘power_t’. Results show 
that ‘adaptive’ and ‘invscaling’ perform slightly better in terms of a 
higher accurate score and less computational time. However, the 

Fig. 7. Distributions of predicted yearly-averaged Hs from (a) the SWAN model and (b) the MLP model in year 2015 as well as (c) the differences in yearly-averaged 
Hs (Hs; swan - Hs;MLP) (right panel). 

Fig. 8. Distributions of predicted yearly-averaged Tp from (a) the SWAN model and (b) the MLP model in year 2015 as well as (c) the differences in yearly-averaged 
Tp (Tp; swan -Tp;MLP) (right panel). 
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differences among the results of the three learning rates are not signif
icant, as all the accurate scores are above 0.8 and the total training time 
of the MLP models are within minutes of one another. 

Lastly, we test the stepsize (α) and exponential decay rates for mo
mentum estimates (β1, β2) of the MLP regressor on the models perfor
mance (Figs. 11 and 12). Following Kingma and Ba (2014), we set α ¼
0.1, 0.01, 0.001, 0.0001, and 0.00001, β1 ¼ 0, 0.5, and 0.9, β2 ¼ 0.99, 
0.999, and 0.9999. The accurate score is sensitive to α, as α decreases, 
the accurate score increases. When α is larger than 0.01, the accurate 
score drops greatly (below 0.8) and the computational time drops as 
well. With small β1 values, the accurate score could also be affected. It is 
found that models with α � 0:01 and β1 �0.9 give higher accurate scores 
(above 0.85). The modeling results are not sensitive to β2, as long 
as β2 2 ½0:99;1Þ. 

Except for the intense data requirement and multiple hyper
parameters for calibration, the MLP model is found superior to a physics- 
based wave model on wave forecasting in a number of ways. First, with 
the trained MLP model, wave forecasting can be greatly accelerated. For 
example, wave forecasting of Hs and Tp in year 2015 using the MLP 
model took less than 1 s on a Mac desktop with one single processor, 
while the physics-based SWAN model took about 4.5 h with the same 
outputs on an equivalent number of processors in an HPC cluster. The 
MLP model could forecast wave conditions in a fraction of the time, 1/ 
10,000th to 1/20,000th, to run the physics-based SWAN model. With 

Fig. 9. The accuracy scores of the validation dataset versus the training and 
validation data length in years. 

Fig. 10. The accuracy scores and time consuming ratio from testing early stopping (True vs. False) with different fractions of (a,c) validation datasets and with 
different mini-batch sizes (b,d). 
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the trained MLP model, massive wave calculations across extremely 
large spatial and temporal scales could be done in a matter of minutes. 
Second, the MLP model is easy to use for future wave simulations. To run 
forward predictions using the trained MLP model, only the matrices of 
weights, biases, and activation functions are required (DeVries et al., 
2017), which can be saved in a small data file. With fewer than 20 lines 
of Python script, and a small data file, time-dependent wave prediction 
at any location and time in Lake Michigan can be performed on any 
computer or device. It is possible to integrate the trained Lake Michigan 
MLP model into an App for use in a smart phone. 

4. Conclusions 

A machine learning framework based on an MLP regressor was 
established for wave forecasting in Lake Michigan. A systematic analysis 
on the performance of the MLP regressor for a long-term wave charac
teristics hindcast/forecast was conducted in this study. Different to 
previous work focusing on ocean-wave conditions, the present study 
utilized the ML tool in a lacustrine environment and ice-cover was, for 
the first time, considered in the application of an MLP regressor on wind- 
generated wave modeling in an enclosed and deep lake. The ML tool 
used wind field and ice coverage as inputs (‘features’ in ML terms) and 
output wave characteristics (‘labels’ in ML terms) including significant 
wave height and peak wave period in the entire lake. The model was 
trained using the simulated Hs and Tp data from a physics-based SWAN 
wave model for the period 2005–2014. The trained MLP model was 
computationally efficient and capable of predicting characteristic wave 
conditions (Hs and Tp), with accuracy comparable to that of the SWAN 
wave model in the validation dataset. Wave forecasting in 2015 showed 

that the correlations between the MLP model and the SWAN model were 
0.92 for Hs and 0.79 for Tp, respectively. This study also showed that the 
MLP regressor had the ability to model wave period (e.g. Tp) with results 
comparable to SWAN modelling. 

This study provided guidance for wave forecast/hindcast in high 
latitudes utilizing an MLP regressor. Sensitivity tests on hyper
parameters and regularization techniques were performed for the 
development and validation of the MLP model. The robustness of the 
MLP model was extensively demonstrated and a suggestive table for 
selection of the MLP model parameters was provided. The ‘adam’ solver 
was suggested for case studies with intense data similar to the work 
presented in this paper. Once the training and validation dataset is 
sufficiently long (>7 years), the MLP model was quite robust in terms of 
prediction accuracy (for 1-year forecasting). Results showed that 
‘learning rate’ set as ‘adaptive’ and ‘invscaling’ performed slightly better 
in terms of higher accuracy scores and computational efficiency than 
when set as ‘constant’. It was suggested that activity function be set as 
‘Relu’ for faster computation. The option ‘Early-stopping’ in certain 
circumstances could save computational time when set to ‘true’, but it 
was determined that higher accuracy scores were achieved when it was 
set to ‘false’. It was also shown that the MLP regressor gave higher 
prediction scores (above 0.85), with mini-batch �200, stepsize � 0:01, 
and an exponential decay rate for the first momentum �0.9, along with 
an exponential decay rate for the second momentum within the range of 
½0:99;1Þ . 

The trained MLP model could act as an efficient wave forecasting 
system for Lake Michigan. Wave forecasting of characteristic wave 
conditions for one year took less than 1 s using the MLP model. By 
comparing the computational efficiency of the MLP model and the 

Fig. 11. (a) The accuracy scores and (b) computational time consuming ratio from testing the learning rate with different step sizes (α). The learning rate is indicated 
by different symbols (triangle indicates “adaptive”, square indicates “invscaling” and circle indicates “constant”). The x-axis is indicated by log10ðαÞ. 

Fig. 12. (a) The accuracy scores and (b) 
computational time consuming ratio on 
testing step size (α) and hyper
parameters (β1 and β2). Beta1 is indi
cated by different marker colors (black 
indicates 0.9, dark grey indicates 0.5, 
and light grey indicates 0). β2 is indi
cated by different symbols (triangle in
dicates 0.99, square indicates 0.999, 
and circle indicates 0.9999). The x-axis 
is indicated by log10ðαÞ. (For interpre
tation of the references to color in this 
figure legend, the reader is referred to 
the Web version of this article.)   
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SWAN model for wave forecasting, it was determined that the compu
tational time of the trained MLP model is a fraction (1/20,000th to 1/ 
10,000th) of that of the physics-based wave model SWAN. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

CRediT authorship contribution statement 

Xi Feng: Writing - original draft, Conceptualization, Visualization, 
Investigation. Gangfeng Ma: Methodology, Software, Supervision. 
Shih-Feng Su: Conceptualization, Methodology. Chenfu Huang: Data 
curation. Maura K. Boswell: Writing - review & editing. Pengfei Xue: 
Writing - review & editing. 

Acknowledgments 

We would like to give our acknowledgement to the National Natural 
Science Foundation of China [No. 51709091]; the Natural Science 
Foundation of Jiangsu Province [No. BK20170874]; and the Funda
mental Research Funds for the Central Universities [No. 2017B005] for 
the funding support. This work was also supported by the Michigan Sea 
Grant College Program, project number (R/CGLH-7), under 
[NA18OAR4170102], from NOAA National Sea Grant, U.S. Department 
of Commerce and funds from the State of Michigan. This is Contribution 
No. 73 of the Great Lakes Research Center at Michigan Tech. 

References 

Akpinar, Adem, Bingolbali, B., Van Vledder, G.P., 2016. Wind and wave characteristics 
in the Black Sea based on the SWAN wave model forced with the CFSR winds. Ocean 
Eng. 126, 276–298. Nov.1.  

Allahdadi, M. Nabi, Gunawan, Budi, Lai, Jonathan, He, Ruoying, Vincent, S. Neary, 
2019. Development and validation of a regional-scale high-resolution unstructured 
model for wave energy resource characterization along the US East Coast. Renew. 
Energy 136, 500–511. 

Ahmad, S., Kalra, A., Stephen, H., 2010. Estimating soil moisture using remote sensing 
data: a machine learning approach. Adv. Water Resour. 33, 69–80. 

Anderson, J.D., Wu, C.H., Schwab, D.J., 2015. Wave climatology in the apostle islands, 
lake superior. J. Geophys. Res. Oceans 120, 4869–4890. 

Assel, R., Cronk, K., Norton, D., 2003. Recent trends in Laurentian Great lakes ice cover. 
Climatic Change 57 (1–2), 185–204. 

Assel, R.A., 2005. Great Lakes Ice Cover Climatology Update: Winters 2003, 2004, and 
2005. NOAA Technical Memorandum GLERL-135. NOAA,Great Lakes 
Environmental Research Laboratory, Ann Arbor, MI.  

Assel, R.A., Wang, J., Cites, A.H., Bai, X., 2013. Analysis of Great Lakes Ice Cover 
Climatology: Winters 2006-2011, NOAA Technical Memorandum GLERL-157. NOAA 
Great Lakes Environmental Research Laboratory, Ann Arbor, MI.  

Bennington, V., McKinley, G.A., Kimura, N., Wu, C.H., 2010. General circulation of Lake 
superior: mean, variability and trends from 1979 to 2006. J. Geophys. Res. Oceans 
115, C12015. https://doi.org/10.1029/2010JC006261. 

Booij, N., Ris, R.C., Holthuijsen, L.H., 1999. A third-generation wave model for coastal 
regions, Part I, Model description and validation. J. Geophys. Res. 104 (C4), 
7649–7666. 

Chawla, A., Spindler, D.M., Tolman, H.L., 2013. Validation of a thirty year wave hindcast 
using the Climate Forecast System Reanalysis winds. Ocean Model. 70, 189–206. 

Deo, M.C., Jha, A., Chaphekar, A.S., Ravikant, K., 2001. Neural networks for wave 
forecasting. Ocean Eng. 28, 889–898. 

DeVries, P.M., Thompson, T.B., Meade, B.J., 2017. Enabling large-scale viscoelastic 
calculations via neural network acceleration. Geophys. Res. Lett. 44, 2662–2669. 

Etemad-Shahidi, A., Bonakdar, L., 2009. Design of rubble-mound breakwaters using M5 
machine learning method. Appl. Ocean Res. 1, 197–201. 

Etemad-Shahidi, A., Yasa, R., Kazeminezhad, M.H., 2011. Prediction of wave-induced 
scour depth under submarine pipelines using machine learning approach. Appl. 
Ocean Res. 33, 54–59. 

Erikson, L.H., Hegermiller, C.A., Barnard, P.L., Ruggiero, P., van Ormondt, M., 2015. 
Projected wave conditions in the Eastern North Pacific under the influence of two 
CMIP5 climate scenarios. Ocean Model. 1–15. 

Goda, Y., 2010. Random Seas and Design of Maritime Structures, third ed. World 
Scientific. 

Gunaydin, K., 2008. The estimation of monthly mean significant wave heights by using 
artificial neural network and regression methods. Ocean Eng. 35, 1406–1415. 

Hong, W.-C., 2008. Rainfall forecasting by technological machine learning models. Appl. 
Math. Comput. 200, 41–57. 

Hubertz, J.M., Driver, D.B., Reinhard, R.D., 1991. Wind waves on the Great lakes: a 32 
year hindcast. J. Coast Res. 7, 945–967. 

James, S.C., Zhang, Y., O’Donncha, F., 2018. A machine learning framework to forecast 
wave conditions. Coast. Eng. 137, 1–10. 

Kingma, Diederik, Ba, Jimmy, 2014. Adam: A Method for Stochastic Optimization arXiv 
preprint arXiv:1412. 6980.  

Komen, G.J., Cavaleri, I., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P.A.E. 
M., 1994. Dynamics and Modeling of Ocean Waves. Cambridge University Press. 

Kukulka, Tobias, et al., 2017. Surface wave dynamics in Delaware Bay and its adjacent 
coastal shelf. J. Geophys. Res.: Oceans 122 (11), 8683–8706. 

Kutupo�glu, Volkan, EmreÇakmak, Recep, Akpınar, Adem, Phvan Vledder, Gerbrant, 
2018. Setup and evaluation of a SWAN wind wave model for the Sea of Marmara. 
Ocean Eng. 165 (Oct.1), 450–464. 

Lary, D.J., Alavi, A.H., Gandomi, A.H., Walker, A.L., 2016. Machine learning in 
geosciences and remote sensing. Geosci. Front. 7, 3–10. 

Lee, T.-L., 2006. Neural network prediction of a storm surge. Ocean Eng. 33, 483–494. 
Li, Jiangxia, Chen, Yongping, Pan, Shunqi, Pan, Yi, Fang, Jiayu, Derrick, M.A., 2016. 

Sowa. “Estimation of mean and extreme waves in the East China seas. Appl. Ocean 
Res. 56, 35–47. 

Malekmohamadi, I., Bazargan-Lari, M.R., Kerachian, R., Nikoo, M.R., Fallahnia, M., 
2011. Evaluating the efficacy of SVMs, BNs, ANNs and ANFIS in wave height 
prediction. Ocean Eng. 38, 487–497. 

Mori, N., Yasuda, T., Mase, H., Tom, T., Oku, Y., 2010. Projection of extreme wave 
climate change under global warming. Hydrol. Res. Lett. 4, 15–19. 

Nair, V., Hinton, G.E., 2010. Rectified linear units improve restricted Boltzmann 
machines. Proceedings of the 27th International Conference on Machine Learning. 

Niroomandi, A., Ma, G., Ye, X., Lou, S., Xue, P., 2018. Extreme value analysis of wave 
climate in Chesapeake Bay. Ocean Eng. 159, 22–36. 

O’Donncha, Fearghal, Zhang, Yushan, Chen, Bei, James, Scott C., 2018. An integrated 
framework that combines machine learning and numerical models to improve wave- 
condition forecasts. J. Mar. Syst. 186, 29–36. 

O’Donncha, Fearghal, Zhang, Yushan, Chen, Bei, James, Scott C., 2019. Ensemble model 
aggregation using a computationally lightweight machine-learning model to forecast 
ocean waves. J. Mar. Syst. 199, 103206. 

Rasouli, K., Hsieh, W.W., Cannon, A.J., 2012. Daily streamflow forecasting by machine 
learning methods with weather and climate inputs. J. Hydrol. 414–415, 284–293. 

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., 
Woollen, J., Behringer, D., et al., 2010. The NCEP climate forecast system reanalysis. 
Bull. Am. Meteorol. Soc. 91, 1015–1057. 

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., 
Chuang, H.-Y., Iredell, M., et al., 2014. The NCEP climate forecast system version 2. 
J. Clim. 27, 2185–2208. 

Shi, Jian, et al., 2019. A 39-year high resolution wave hindcast for the Chinese coast: 
model validation and wave climate analysis. Ocean Eng. 83 (JUL.1), 224–235. 

Soares, Guedes C., Scotto, M.G., 2007. Application of the r-order statistics for long-term 
predictions of significant wave heights. Coast Eng. 51, 387–394. 

Tolman, H.L., Balasubramaniyan, B., Burroughs, L.D., Chalikov, D.V., Chao, Y.Y., 
Chen, H.S., Gerald, V.M., 2002. Development and implementation of wind generated 
ocean surface wave models at NCEP. Weather Forecast. 17, 311–333. 

Tsai, C.-P., Lin, C., Shen, J.-N., 2002. Neural network for wave forecasting among multi- 
stations. Ocean Eng. 29, 1683–1695. 

X. Feng et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0029-8018(20)30538-2/sref1
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref1
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref1
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref2
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref2
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref2
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref2
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref3
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref3
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref4
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref4
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref5
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref5
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref6
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref6
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref6
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref7
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref7
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref7
https://doi.org/10.1029/2010JC006261
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref9
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref9
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref9
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref10
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref10
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref11
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref11
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref12
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref12
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref13
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref13
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref14
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref14
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref14
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref15
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref15
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref15
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref16
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref16
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref17
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref17
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref18
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref18
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref19
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref19
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref20
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref20
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref21
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref21
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref22
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref22
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref23
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref23
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref24
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref24
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref24
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref25
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref25
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref26
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref27
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref27
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref27
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref28
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref28
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref28
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref29
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref29
http://refhub.elsevier.com/S0029-8018(20)30538-2/optjaSlbBOHsC
http://refhub.elsevier.com/S0029-8018(20)30538-2/optjaSlbBOHsC
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref30
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref30
http://refhub.elsevier.com/S0029-8018(20)30538-2/optVJKqCXdnXG
http://refhub.elsevier.com/S0029-8018(20)30538-2/optVJKqCXdnXG
http://refhub.elsevier.com/S0029-8018(20)30538-2/optVJKqCXdnXG
http://refhub.elsevier.com/S0029-8018(20)30538-2/optisvpjPFNqq
http://refhub.elsevier.com/S0029-8018(20)30538-2/optisvpjPFNqq
http://refhub.elsevier.com/S0029-8018(20)30538-2/optisvpjPFNqq
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref31
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref31
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref32
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref32
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref32
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref33
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref33
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref33
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref34
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref34
http://refhub.elsevier.com/S0029-8018(20)30538-2/optjK3SVFBKcT
http://refhub.elsevier.com/S0029-8018(20)30538-2/optjK3SVFBKcT
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref35
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref35
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref35
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref36
http://refhub.elsevier.com/S0029-8018(20)30538-2/sref36

	A multi-layer perceptron approach for accelerated wave forecasting in Lake Michigan
	1 Introduction
	2 Physics-based wave modeling
	2.1 SWAN model
	2.2 Wind data
	2.3 Ice data
	2.4 Model configuration and validation
	2.5 Machine learning for wave forecasting
	2.6 Multi-layer perceptron
	2.7 Data preprocessing
	2.8 Training and validation
	2.8.1 Significant wave height
	2.8.2 Peak wave period

	2.9 Wave forecasting

	3 Discussions
	4 Conclusions
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	References


