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A B S T R A C T

A thirty-seven year wave hindcast (1979–2015) in Chesapeake bay using NCEP's Climate Forecast System
Reanalysis (CFSR) wind is presented. The long-term significant wave heights are generated by the third-
generation nearshore wave model SWAN, which is validated using the wave height measurements at buoy sta-
tions in the bay. The simulated wave heights are analyzed to characterize their temporal and spatial variabilities
as well as long-term changing trends by using an Empirical Orthogonal Function (EOF) analysis and an empirical
cumulative distribution function approach. Seasonal variability as well as extreme storm effects on significant
wave heights are revealed in the first mode of principle component. Then, an extreme value analysis based on
generalized extreme value and generalized Pareto distribution functions is applied to evaluate design wave
heights with different return periods. The effects of key parameters including threshold value, time span and data
length on the design wave heights are extensively studied. Through the comparisons of different distribution
functions evaluated by Bayesian Information Criterion and Akaike Information Criterion, it is found that Gamma
distribution function and generalized extreme value analysis provide the best fit for annual and monthly data,
while generalized Pareto distribution function gives the best fit when peak-over-threshold analysis is conducted.
1. Introduction

Coastal planners and engineers increasingly require information
about wave climate to make better planning decisions and minimize
future coastal hazards and economic loss, because coastal waves play a
significant role in coastal flooding and damage of coastal infrastructure.
Wave studies in the field of ocean and coastal engineering have usually
focused on characterizing the spatial and temporal variabilities of char-
acteristic wave height, typically the significant wave height, and deter-
mining the design wave heights for structure design purposes.

To study spatial and temporal variabilities of significant wave height,
statistical analysis of long-term wave climate data could be performed.
For example, Empirical Orthogonal Function (EOF) analysis provides
useful information regarding possible spatial patterns of variability
within the data and how they change with time. EOF analysis has been
widely used in oceanography to study major modes of climate variability
such as the El Nino/Southern Oscillation (ENSO) (Roundy, 2015; Lian
and Chen, 2012; Messie and Chavez, 2011), and in coastal engineering to
identify spreading and seasonal variability in shoreline and slope data
(Lemke and Miller, 2017). The long-term changing trends of wave height
can be revealed by means of a regression analysis and an empirical
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cumulative distribution function approach, which have been applied in a
number of recent studies on extreme wave height in different ocean and
coastal regions (Komar and Allan, 2007, 2008; Ruggiero et al., 2010).
Long-term trend of extreme wave height is of considerable interest in
recent wave studies because significant changes in wave heights have
been found in many coastal and ocean regions. For instance, Mendez
et al. (2006) and Menendez et al. (2008) revealed significant long-term
variability of extreme wave height in the Northeast Pacific ocean using
buoy measurements and a time-dependent peak over threshold (POT)
model. In the North Atlantic ocean near the coast of England (Carter and
Draper, 1988; Bacon and Carter, 1991) and east coast of U.S. (Komar and
Allan, 2007, 2008), researchers have found significant increases in wave
height generated by extreme storms during the past decades. Similar
results have also been reported in other locations such as west coast of
U.S. using measurements from NOAA buoy stations (Komar et al., 2009;
Allan and Komar, 2000; 2006; Ruggiero et al., 2010) and by analysis of
storm intensities and hindcasted wave heights (Graham and Diaz, 2001).

To determine the design wave heights, extreme value analysis of
significant wave height is always performed. Extreme value analysis
(EVA) has broad applications in many disciplines such as coastal engi-
neering, weather and climate, finance and traffic prediction. The theory
1 March 2018
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Fig. 1. Chesapeake Bay and location of Buoys inside the Bay.

Fig. 2. The computational grid for SWAN wave model.

Fig. 3. The simulated 3-Hourly significant wave height (SWH) at Stingray Point
in Chesapeake Bay during 1979 2015.
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of EVA has been presented by a number of researchers (Gumbel, 2012;
Coles et al., 2001; Kotz and Nadarajah, 2000; Katz et al., 2002; Hawkes
et al., 2008; Cooley, 2009, 2013; Cooley et al., 2007). Its applications on
extreme wave height analysis were presented by Goda (1992), Mathiesen
et al. (1994) and Menendez et al. (2008). The central idea of extreme
wave height analysis is to determine the long-term variability of signif-
icant wave height through implementations of distribution functions and
quantile functions as well as extrapolation of historical data (Goda, 1992;
Muir and El-Shaarawi, 1986; Muraleedharan et al., 2012). The unknown
parameters of the distribution functions are determined by a fitting
method. The common fitting methods include maximum likelihood es-
timate (MLE), generalized maximum likelihood estimate (GMLE), the
method of moments (MOM), probability weighted moment (PWM), least
square method (LSM), Bayesian and L-moments (Coles et al., 2001). Each
of these methods has its own merits and demerits. For example, for small
sample data, MLE might not give good estimate of parameters and
L-moment could be used instead. MOM quantile estimators have smaller
root mean square errors for specific range of shape parameter values than
L-moment and MLE (Martins et al., 2000). More detailed information
regarding the estimators can be referred to Martins et al. (2000). After
the determinations of distribution functions and quantile functions, the
extreme wave height data is organized in a way that is feasible for
extrapolation. The design wave heights can be finally determined given
different return periods and probabilities of occurrence.

This paper is dedicated to investigating wave climate in Chesapeake
Bay. Due to the lack of reliable long-term wave data, limited studies on
wave climate in Chesapeake bay have been carried out. However, sig-
nificant advances in satellite altimeters have made it possible for re-
searchers to use wave models to reproduce the historical wave height
using reanalysis technique. This technique has been utilized in many
earlier studies on wave climate analysis, for example, Stopa et al. (2013),
Stopa and Cheung (2014), Chawla et al. (2013), Rascle and Ardhuin
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(2013), Tolman et al. (2013), Mentaschi et al. (2015), Anderson et al.
(2015). In this study, the third-generation nearshore wave model SWAN
is applied to reconstruct long-term significant wave height in the entire
Chesapeake Bay. The objectives of this study are (1) to hindcast signifi-
cant wave height in the bay during 1979–2015; (2) to investigate spatial
and temporal variabilities of significant wave height in the bay; (3) to
determine and compare design wave heights by extreme value analysis.

The paper is organized as follows. The data and methodology are
introduced in section 2. In section 3, the simulated significant wave
heights are analyzed statistically to reveal their spatial and temporal
variabilities in the past decades. Extreme value analysis of the significant
wave heights are presented in section 4. Sensitivity of extreme wave



Fig. 4. Comparisons between simulations and measurements for a selected time
period in year 2011 at (a) Potomac (b) Stingray Point.

Fig. 6. Comparisons between simulations and measurements for a selected time
period in year 2012 at (a) Potomac (b) Stingray Point.

A. Niroomandi et al. Ocean Engineering 159 (2018) 22–36
height analysis to key parameters is discussed in section 5 and finally
conclusions are presented in section 6.

2. Wave model

Although understanding of wave characteristics is essential in many
aspects including navigational and design purposes, this knowledge has
been limited in Chesapeake Bay mostly because of scarcity of reliable
observational data (Farnsworth, 1997). Recently, a number of buoy
systems were deployed by the National Oceanic and Atmospheric Ad-
ministrations (NOAA) Chesapeake Bay Interpretive Buoy System (CBIBS)
to gather meteorological, oceanographic, and water-quality data. The
program was launched in 2007 and the total number of buoys deployed
so far is ten. The locations of these buoys are shown in Fig. 1. These buoys
are capable of collecting information on a variety of parameters including
significant wave height and period, maximum wave height and mean
wave direction. Data is collected every 10–60min depending on the
parameter and is accessible through their website (http://buoybay.noaa.
Fig. 5. Correlations between simulations and measurements for a sele
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gov). CBIBS provide valuable short-term wave height data for wave
model validation.

To hindcast long-term significant wave height in Chesapeake bay, 37
years wind data (1979–2015) were collected through the National Cen-
ters for Environmental Prediction (NCEP) Climate Forecast System
Reanalysis (CFSR) (Saha et al., 2010, 2014). The CFSR uses a coupled
atmosphere-ocean-land surface-sea ice system with advanced data
assimilation techniques and an extensive database of meteorological
observations to create its products. The original CFSR dataset spans from
1979 to 2010 and the second version of the Climate Forecast System
(CFSv2) provides products from 2011 up until now with several im-
provements over CFSR, such as a higher spatial resolution (Saha et al.,
2014). Temporal resolution for both models is 6 h. However, spatial
resolution of the CFSv2 is approximately 20 km compared to 38 km for
CFSR, which is a significant improvement. In this study, the
third-generation SWAN wave model (Rusu et al., 2009) is employed to
obtain 3-hourly significant wave heights for the past 37 years. The
computational domain encompasses the full Chesapeake Bay and a
cted time period in year 2011 at (a) Potomac (b) Stingray Point.

http://buoybay.noaa.gov
http://buoybay.noaa.gov


Fig. 7. Correlations between simulations and measurements for a selected time period in year 2012 at (a) Potomac (b) Stingray Point.

Fig. 8. EOF analysis of daily-averaged SWHs and extraction of dominant modes of spatial variability (a) mode 1 (b) mode 2 (c) mode 3. Mode 1 accounts for more than
90% of spatial variability.
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portion of the nearby coastal region. The computational grid is curvi-
linear and includes 129 � 65 mesh cells (Fig. 2). The bathymetry data is
from NCEI Estuarine Bathymetric Digital Elevation model. For the SWAN
simulations, wave energy dissipation mechanisms including white
capping, wave breaking and bottom friction are triggered. As an example,
the simulated significant wave heights (SWHs) for 37 years at Stingray
Point are depicted in Fig. 3. Seasonal variability of the wave heights can
be clearly seen. Because the hindcasted wave height data set is huge, the
model-data comparisons in selected time periods are shown in order to
demonstrate the model performance. The simulated and measured SWHs
at buoy stations Potomac and Stingray Point in year 2011 and 2012 are
compared in Figs. 4 and 6. The reason of choosing year 2012 for
demonstration is because wave climate in Chesapeake bay was affected
by hurricane Sandy in this year. It can be seen that the simulations match
reasonably well with the measurements. Particularly, the wave height
variations during hurricane Sandy were captured by the model. To
quantify the model performance, the correlations between simulations
25
and measurements at Potomac and Stingray Point during 2011 and 2012
are presented in Figs. 5 and 7. Particularly, the bias ¼ 1

N

PN
i¼1ðMi � OiÞ,

RMSE and correlation coefficients are evaluated and shown in the fig-
ures. The coefficients of determination (R2) are above 0.62 and the bias
and RMSE are reasonably small, indicating that the SWAN model is
capable of simulating temporal variations of SWHs with reasonable
accuracy.

3. Spatial and temporal variabilities of SWHs

The reconstructed SWHs exhibit temporal and spatial variabilities. In
order to reveal their patterns, an empirical orthogonal function (EOF)
analysis on daily-averaged SWHs is performed. Like Fourier analysis, the
EOF provides an expansion of the original data in a series of functions
that separate the spatial and temporal variations. These functions are
determined by the correlations within the data set and may suggest
certain processes or time scales of change. The idea of EOF analysis is to



Fig. 9. EOF analysis of daily-averaged SWHs and extraction of dominant modes of temporal variability (a) mode 1 (b) mode 2 (c) mode 3. Seasonal variability of SWHs
is observed from Mode 1. Non-winter seasons are shown using red arrow. (For interpretation of the references to colour in this figure legend, the reader is referred to
the Web version of this article.)

Table 1
Name and occurrence time of hurricanes and tropical storms
inside Chesapeake Bay for the past decade.

Name Date

Hurricane Sandy Oct. 26, 2012
Hurricane Irene Aug. 26–28, 2011
Hurricane Ida Nov. 10–14, 2009
Hurricane Hanna Sep. 6, 2008
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express the time series data as

Zðx; y; tÞ ¼
XN
k¼1

PCðtÞ⋅EOFðx; yÞ (1)

where Zðx; y; tÞ is the original time series as a function of time ðtÞ and
space ðx;yÞ, EOFðx; yÞ is the eigenfunctions (or vectors) of the correlation
matrix of the data, which shows the spatial structures of the major factors
that account for the spatial variations of the data, and PC(t) is the prin-
cipal component describing the temporal variation of each EOF. The
EOFs can be obtained by computing the eigenvalues and eigenvectors of
a spatially weighted anomaly covariance matrix of a field and the
resulting eigenvalues provide a measure of the percentage variance
explained by each mode. The lower-mode EOFs represent large-scale
variability and higher-mode EOFs show smaller scales or even some-
times random noises. In this study, EOF analysis is performed using a
Matlab package and results for the first three modes are presented in
Figs. 8 and 9, respectively.

Fig. 8 demonstrates the spatial distributions of the first three domi-
nant EOF modes for the entire Chesapeake bay. The corresponding PCs
are presented in Fig. 9, in which the values are scaled to the range be-
tween �1 and 1 by dividing their maximum values. From the calculated
eigenvalues, it can be determined that the mode 1 accounts for 91.2% of
spatial variability of SWHs. The other modes only contribute to a small
part of the signal variance. Clearly, the PC of mode 1 demonstrates a
seasonal variability of SWHs, with positive PC in winter season (Octo-
ber–March) and negative PC in summer season. The first EOF mode de-
scribes deviation from the mean SWH. Combined with the first PC mode,
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it can be interpreted that, in winter season when PC is positive, the wave
heights are generally greater than the mean SWH. While in summer
season when PC is negative, the wave heights are generally smaller than
the mean SWH. The seasonal variation of wave climate is typical in
coastal regions. From Fig. 8, it is also found that the first EOF has the
largest value in the lower Chesapeake bay and the smallest value in the
upper bay. It is because the lower bay is more exposed and wave height
variations are more significant in this region. Since the other PC modes
do not show clear variation patterns, they are not discussed herein.

In the first PC mode in Fig. 9, several spikes with large positive PC
values can be detected. These anomalies are generally linked with hur-
ricane or tropical storm events. Table 1 shows the names of tropical
storms and times of occurrence in the past decade. Largest PC values are
spotted when storms hit the bay as shown in Fig. 10. There is a close
correlation between occurrence of storms and mode 1 eigenvalues.

The changing trend of significant wave height at a representative site
is analyzed using a regression analysis. Stingray Point is selected for this
purpose since this point is not far from the mouth of the bay so it can
capture extreme wave heights entering the bay. Regression analysis is
performed on winter-averaged and annual maxima data derived from
SWAN results, which are depicted in Fig. 11a. It is found that extreme
wave heights at this station were generally increasing. The increasing
rate of annual maximumwave heights is much higher than that of winter
average (4.1 mm=yr versus 1.4 mm=yr).

To examine the robustness of the regression analysis, sensitivity of the
calculated trends are tested with respect to the amount of data included
in the analysis. Regression analysis is firstly performed using data from
1979 to 2008, and then rate of increase is computed by adding data
annually. This process is repeated until all years are included in the
analysis. The computed increasing rates for annual maxima and winter
average are presented in Fig. 11b. Results show that except year 2011 in
which there is a decrease in winter average and a sudden increase in
annual maxima, rates of wave height increase are fairly stable regardless
of the amount of data used. The decrease in winter average and increase
in annual maxima in 2011 can be associated with hurricane Irene which
passed through Chesapeake Bay in August.

Statistical significance test has been used widely in hydrology and
coastal engineering (Tasdighi et al., 2017; Ruggiero et al., 2010) to



Fig. 10. Detection of significant storm events in Chesapeake Bay by EOF analysis.

Fig. 11. (a) Decadal increases in winter average and annual maxima SWHs (b)
Rate of increase of the winter average and annual maxima SWHs at Sting-
ray Point.

Fig. 12. Comparison of the numbers of independent storms for the periods
1979–1997 and 1998–2015, documenting the shift in the wave climate to
higher waves (a) number of distributions for a range of SWHs (b) empirical
cumulative distribution functions. The analyses are based on the simulated
SWHs at Stingray Point.
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examine the significance of the slope of a regression model. In this study,
the statistical significance test is performed on each subset of data to
examine whether or not the rates of SWH increases derived from
regression analysis are statistically significant. The significance test re-
sults in a p-value > 0.05, meaning that for both winter average and
annual maxima, rate of increases are not statistically significant.

In order to further examine the progressive increases of waves, more
detailed analysis of SWHs is provided using probability distributions of
27
all independent storms. Independent storm is defined by Mendez et al.
(2006). In this definition, minimum time span between 2 consecutive
storms should be selected such that Poisson process is assumed to be
valid. Fig. 12a shows the number of independent storms occurred for a
range of SWHs during two time periods: The first period is defined from



Fig. 13. 99.5 percentile of independent storms (in meters) during periods (a) 1979–1997 (b) 1998–2015 (c) difference of two periods. Results show that the bay
experiences a slight increase in extreme wave heights except the lower bay.

Fig. 14. Threshold selection using (a) parameter stability plot and (b) mean
residual life plot.
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1979 to 1997 and the second one is from 1998 to 2015. Results show that
although total number of independent storms are higher during
1979–1997 by about 12%, the number of extreme storms with SWH
larger than 1.5m exceeds by 33% during period 1998–2015. More
explicit explanation of progressive increases of extreme storms is pre-
sented in Fig. 12b in which the empirical cumulative distribution func-
tions for the two periods are depicted. Although medians for the two
periods are almost the same (0.79m and 0.80m for periods 1979–1997
and 1998–2015, respectively), a 9% increase is observed in 99.5
28
percentile in the period of 1998–2015, confirming the findings from the
regression analysis presented in Fig. 11 and demonstrating a slight shift
towards higher values of extreme wave heights in the past decades. It is
also shown that there is a consistency between the annual increasing
rates of SWHs based on regression analysis and cumulative distribution
function analysis.

A more comprehensive study of progressive increases of waves in
Chesapeake bay is performed by obtaining 99.5 percentile of indepen-
dent storms during periods 1979–1997 and 1998–2015 for the entire
bay, which are presented in Fig. 13. Except lower bay where a maximum
decrease of 0.27m in extreme wave height is observed (Fig. 13c), the rest
of the bay experiences an average increase of 0.1 m and the maximum
increase is found to be 0.36m in the central bay. Although these changes
are small in terms of intensity, they confirm a slight increase in wave
heights during the past decades.

4. Extreme value analysis

In this section, extreme value analysis will be performed to obtain
design wave heights corresponding to different return periods using
various extreme value assessment models, to examine applicability of
these models and to perform sensitivity analysis on extracted data to
determine the uncertainty that comes along with extreme value models.
In extreme value theory, it has been shown that, for sufficiently long
sequences of independent and identically distributed random variables,
the maxima of samples of size n, can be fitted into the generalize extreme
value (GEV) family of distributions, which has the following cumulative
distribution function (Coles et al., 2001)

Gðz; μ; σ; ξÞ ¼

8>>><
>>>:

exp

"
�
�
1þ ξ

z� μ
σ

��1=ξ
#
; ξ 6¼ 0

exp
�
� exp

�
�z� μ

σ

��
; ξ ¼ 0

(2)

where μ, σ and ξ are the location, scale and shape parameters, respec-
tively. The three classes of GEV distribution functions are Gumbel dis-
tribution (Type I, ξ ¼ 0), Frechet distribution (type II, ξ < 0) andWeibull
distribution (type III, ξ > 0). The return level corresponding to return



Fig. 15. Diagnostic plots from fitting the GEV df to annual maximum (left panel) and monthly maximum (right panel) SWHs (a,d) Density plots of empirical data and
fitted GEV df (b,e) Quantile quantile plot (c,f) Return level plot with 95% confidence intervals.

Table 2
Return levels using annual maxima and different parameter estimation methods.

Return period (year) Return level (m)

LMoments MLE

10 1.90 1.89
25 1.97 1.98
50 2.04 2.04
100 2.09 2.09

Table 3
Return levels using monthly maxima and different parameter estimation
methods.

Return period (year) Return level (m)

LMoments MLE

10 1.50 1.50
25 1.68 1.67
50 1.8 1.79
100 1.91 1.90
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period T can be obtained using the following equation

RT ¼

8>>><
>>>:

μ� σ
ξ

(
1�

"
� ln

�
1� 1

T

��ξ
#)

; ξ 6¼ 0

μ� σln
�
� ln

�
1� 1

T

��
; ξ ¼ 0

(3)

One major concern with GEV approach is that GEV is often applied to
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annual maxima data, hence ignores other significant extreme events in
each year. Other approaches that can be used to reduce this limitation are
block maxima and peak-over-threshold (POT) method. In block maxima
approach, the entire data is divided into non-overlap periods of equal size
called block and maximum value in each block is selected for analysis. An
example of block maxima approach is monthly maxima which is also
included in this study. In the POT method, a high threshold is selected



Fig. 16. (a) Number of storm events in which the SWH exceeded a threshold of
1m per calendar month (b) Year day of exceedance above the threshold (dots),
annual maxima (circles) and the five largest storms per year (asterisks), indic-
ative of the seasonality of extreme wave heights in Chesapeake Bay. The analysis
is based on the simulated SWHs at Stingray Point.

Fig. 17. Diagnostic plots from fitting the GP distribution function to indepen-
dent storms (a) Density plot of empirical data and fitted GP distribution function
(b) Quantile quantile plot (c) Return level plot with 95% confidence intervals.
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and extreme value analysis is performed on all the data above the given
threshold. It can be shown that for sufficiently high threshold, the data
can be fitted into the so-called generalized Pareto (GP) distribution
function given by

Fðz; σ; ξÞ ¼

8>><
>>:

1�
�
1þ ξ

z
σ

��1=ξ
; ξ 6¼ 0

1� exp
�
�z
σ

�
; ξ ¼ 0

(4)

where σ> 0 is the scale parameter and ξ is the shape parameter of the GP
distribution function.

Two important concerns with POT approach are the selection of the
threshold and the minimum time span Δt, which could affect the results
in terms of frequency and exceedance estimates (Mendez et al., 2006).
Regarding the time span, Δt should be chosen sufficiently long to guar-
antee the independency between consecutive storms, and to satisfy the
validity of Poisson process. A wide range of Δt can be found in the
literature (Luceno et al., 2006; Mendez et al., 2006). In this section, Δt ¼
3 days is selected. Results for Δt ¼ 4; 5 and 6 days are presented in the
discussion section to investigate the sensitivity of time interval on the
results.

The choice of threshold is also important in the POT analysis. The
threshold (u) should be taken sufficiently high for the distribution
function to provide a reasonable estimate. Nevertheless, it cannot be too
high to produce large variance on the estimated parameters. Common
approaches for selecting threshold include parameter stability plot and
mean residual life plot. In the first approach, the parameter estimates
from GP distribution function are plotted against a range of values of u.
The parameter estimates should be stable above the threshold at which
the GP model becomes valid. In the second approach, u is plotted against
30



Table 4
Return levels calculated using POT analysis (threshold¼ 1m, Δt ¼ 3 days) and
different parameter estimation methods.

Return period (year) Return level (m)

LMoments MLE

10 1.86 1.86
25 2.00 2.01
50 2.05 2.06
100 2.08 2.09

Fig. 18. Comparison of return levels determined by annual maxima, monthly
maxima and POT analyses.

Table 5
Return levels for time span Δt ¼ 3 days and various thresholds.

Return period (year) Threshold (m) for Δt ¼ 3 days

0.8 0.9 1.0 1.1 1.2

10 1.71 1.78 1.86 1.91 1.95
25 1.91 1.96 2.01 2.04 2.06
50 1.99 2.03 2.06 2.08 2.09
100 2.04 2.07 2.09 2.10 2.11

Table 6
Return levels for time span Δt ¼ 4 days and various thresholds.

Return period (year) Threshold (m) for Δt ¼ 4 days

0.8 0.9 1.0 1.1 1.2

10 1.75 1.81 1.87 1.93 1.96
25 1.94 1.98 2.02 2.05 2.06
50 2.02 2.04 2.06 2.08 2.09
100 2.06 2.08 2.09 2.10 2.10

Table 7
Return levels for time span Δt ¼ 5 days and various thresholds.

Return period (year) Threshold (m) for Δt ¼ 5 days

0.8 0.9 1.0 1.1 1.2

10 1.81 1.86 1.91 1.93 1.96
25 1.98 2.01 2.04 2.05 2.06
50 2.04 2.06 2.08 2.08 2.09
100 2.08 2.09 2.10 2.10 2.10

Table 8
Return levels for time span Δt ¼ 6 days and various thresholds.

Return period (year) Threshold (m) for Δt ¼ 6 days

0.8 0.9 1.0 1.1 1.2

10 1.88 1.93 1.92 1.97 2.00
25 2.02 2.05 2.04 2.07 2.08
50 2.07 2.08 2.08 2.09 2.10
100 2.09 2.10 2.10 2.10 2.11

Table 9
Summary of AIC and BIC values calculated from different models using annual
maxima data.

Criteria Model

GEV Weibull Gumbel Gamma Log-normal

AIC �9.89 �8.24 �8.36 �11.35 �8.91
BIC �4.73 �5.01 �5.13 �8.13 �7.98
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the ‘mean excess’, which is defined as the mean of the exceedances of u
minus u. The plot should be linear above the threshold at which the GP
model becomes valid. In this study, both approaches are employed to
determine the threshold. Results are depicted in Fig. 14, which suggests
that both scale and shape parameters show stable behavior around 1m.
Therefore, a threshold of 1m can be considered as a suitable choice for
POT analysis. The interpretation of a mean residual life plot is not always
31
easy. As can be seen from Fig. 14b, the plots are almost linear around
u¼ 1m, and then appear to decrease sharply from u > 1:1 m. Therefore,
a threshold of 1m is chosen to perform POT analysis.

Mazas and Hamm (2011) showed that along with GEV and GP dis-
tribution functions, the Gamma distribution function often behaves well
in terms of fitting the data. Therefore, performance of Gamma distribu-
tion function is also examined. The cumulative distribution function of
Gamma is given by

Fðz; σ; ξÞ ¼ γðξ; z=σÞ
ΓðξÞ (5)

where Γ is the Gamma function and γ is the lower incomplete gamma
function.

To demonstrate and assess the performance of different extreme value
analysis models, the simulated wave heights at Stingray Point are used in
this section. Both GEV and POT analysis are performed. For GEV analysis,
annual and monthly maxima are extracted from simulated wave height
data. The parameter estimation is performed by MLE and L-moments.
The results of MLE are shown in Fig. 15. The density plots (Fig. 15a,d)
show good agreement between the empirical density (red line) and that
of the fitted GEV distribution function (dashed blue line) for both annual
and monthly maxima. Fig. 15b,e show Q-Q plots of the empirical data
quantiles against those derived from the fitted GEV distribution function.
The plots are reasonably straight indicating that the utilization of the
GEV distribution function is fulfilled by good approximation. For annual
maxima (Fig. 15b), a slight deviation from the straight line can be
observed, however, this deviation is typical for extreme value analysis
because of uncertainties associated with extreme value problems. Finally,
Fig. 15c,f show the return levels corresponding to different return periods
of extreme wave heights for annual and monthly maxima respectively.
The points on the graphs (Fig. 15c,f) are the estimated return levels from
annual and monthly maxima data, respectively. The solid blue lines are
the estimated return levels based on the fitted GEVmodel and the dashed
red lines are 95% confidence intervals. For both models, the empirical
values fall within the 95% confidence intervals and close to the estimated
return level, especially, for the monthly maxima model, showing that
both models can provide acceptable values for return levels. More
detailed information regarding the return levels using different param-
eter estimators are presented in Table 2 and Table 3, respectively. Both
the plots and tables show that return levels extracted from annual max-
ima data have higher values compared to those extracted from monthly
maxima data. For example, return levels for 10, 25, 50 and 100 years
return periods from annual maxima data are 26%, 19%, 14% and 10%
higher than those frommonthlymaxima data. It can be also seen from the
tables that there are minor changes in return levels in terms of using



Fig. 19. Q-Q plots derived from (a) GEV (b) Weibull (c) Gamma (d) Log-normal (e) Gumbel distribution functions.

Table 10
Summary of AIC and BIC values calculated from different models using monthly
maxima data.

Criteria Model

GEV Weibull Gumbel Gamma Log-normal

AIC 163.52 197.43 171.66 161.82 168.06
BIC 173.81 205.63 179.86 170.01 172.25
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different parameter estimators. The variation of return level is less than
0.6%, indicating that both estimators can be used for extreme value
analysis of wave height.

For POT analysis, a threshold of 1m and a time span of 3 days are
selected, which results in 386 independent storms. The yearly distribu-
tion of storm events is presented in Fig. 16. It can be seen from Fig. 16a
that more than 75% of storm events occur in the winter season. Fig. 16b
shows the distribution of independent storms above 1m in year day, in
which extreme storm events, annual maxima and 5-largest storms in each
year are presented with different symbols. The largest wave heights
appear in the later hurricane season (Sep. and Oct.). As detected by EOF
analysis, seasonal variation of extreme wave heights is observed.

The results using MLE estimator is presented in Fig. 17. Density plot
(Fig. 17a) shows a good agreement between the empirical density
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function (red line) and the fitted GP distribution function (dashed blue
line). Similar to GEVmodel, Q-Q plot (Fig. 17b) from GPmodel is straight
indicating that GP distribution function can be used for EVA with good
approximation. The empirical points (Fig. 17c) are very close to the
estimated return levels from GP distribution function showing that it
provides good approximation for return levels. Comparisons of return
levels using different estimators are shown in Table 4. Slight differences
on return levels are observed using MLE and L-moments estimators.

Comparison of return levels obtained from GEV and POT show that
POT and GEV produce almost the same results, especially for higher re-
turn periods. For example, for 100 year return period, POT and annual
maxima GEV produce the same results, while, for monthly maxima GEV
model the difference is only 10%. From the above analyses, it can be
concluded that both GEV and POT are reliable approaches for estimating
design wave heights. More detailed comparisons of these three ap-
proaches are presented in Fig. 18, in which return levels or design wave
heights are plotted against return periods using MLE estimator. The
conclusions are the same as what are observed in Tables 2–4.

5. Discussions

The choice of distribution functions, the selection of threshold and
time span as well as data length included in the analysis are important in
extreme value assessment. Therefore, this section is devoted to perform



Fig. 20. Q-Q plots derived from (a) GEV (b) Weibull (c) Gamma (d) Log-normal (e) Gumbel distribution functions.

Table 11
Summary of AIC and BIC values calculated from different models using threshold
of 0.8m and time span of 3 days.

Criteria Model

GP Gamma Log-normal

AIC �568.89 �234.31 �283.85
BIC �559.52 �224.94 �274.48
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sensitivity analyses of these parameters to understand the effects of each
parameter on the estimation of design wave height.
5.1. Threshold and time span

In order to investigate the impacts of threshold wave height and time
span on design wave heights, a sensitivity analysis is performed by
choosing values of 0.8, 0.9, 1.0, 1.1 and 1.2m for threshold wave height
and 3, 4, 5 and 6 days for time spans. The return levels are calculated
using MLE estimator and results for different time spans are shown in
Tables 5–8.

It is shown that design wave height generally increases for different
return periods with increasing time span. Another interesting result is
that, for a specific time span, higher threshold wave height results in
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higher return level. Although, the variation rates of return levels are very
small, especially, for higher return periods.
5.2. Distribution functions

In order to evaluate the performance of GEV and GP distribution
functions in terms of fitting the data, a comparison is made between GEV
distribution functions and Weibull, Gumbel, Gamma and Log-normal
distribution functions by calculating Bayesian Information Criterion
(BIC), also known as the Schwarz Criterion (Schwarz, 1978) and Akaike
Information Criterion (AIC) (Akaike, 1974). BIC minimizes the bias be-
tween the fitted model and the unknown true model, which is given by

BIC ¼ �2lnLþ kplnN (6)

where L is the likelihood of the fit, N is the sample size (number of storm
peaks above threshold) and kp is the number of parameters of the dis-
tribution. The AIC which can be inferred as the best compromise between
bias and variance is given by

AIC ¼ 2lnLþ 2kp (7)

A lower value of AIC or BIC indicates a better fit. It is worth noting
that the best fit does not necessarily provide the desirable result for
design purposes, as selecting a conservative return level seems more



Fig. 21. Q-Q plots derived from (a) GP (b) Gamma (c) Log-normal distribution functions.

Table 12
Summary of 100-year design wave height obtained from various dataset and
models.

Model Dataset

1979–88 1979–97 1979–2006 1979–2015

GEV-monthly maxima 1.76 1.78 1.87 1.90
GEV-annual maxima 1.77 1.84 2.10 2.09
Gamma-monthly maxima 1.85 1.87 1.90 1.90
Gamma-annual maxima 1.91 1.96 2.09 2.12
GP (u¼ 1m, Δt ¼ 3 days) 1.90 1.96 2.06 2.09
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reasonable.
The goodness of fit test is firstly performed on GEV, Weibull, Gumbel,

Gamma and Log-normal using annual maxima data. Table 9 shows the
summary of AIC and BIC values calculated for different models using
MLE.

It can be seen from Table 9 that there is a slight difference between
AIC and BIC calculated from the models showing that nearly all models
are capable of fitting the annual maxima data. However, Gamma distri-
bution function gives the best fit and GEV provides a better fit than
Weibull and Gumbel distribution functions. Q-Q plot is employed to
qualitatively compare the performance of all models and to check
whether or not the actual and model data sets come from a population
with the same distribution (Fig. 19). For Gumbel andWeibull distribution
functions, Q-Q plots confirm AIC and BIC tests shown in Table 9 as some
points deviate from the straight line. However, for GEV, log-normal and
Gamma distribution functions, the points fall approximately along the
reference line indicating that these models provide better fits.

Analyses are also performed on monthly maxima data to evaluate the
performance of all models. The results are presented in Table 10.

Clearly, Weibull distribution function fails to give a good fit since AIC
and BIC values of this model are much higher compared to others and
Gamma distribution function still provides the best fit. Q-Q plots (Fig. 20)
show graphically that Weibull and Gumbel distribution functions are not
good options for EVA on extreme wave heights and GEV and Gamma
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distribution functions provide the best fits among all models. The Log-
normal distribution function is not able to capture the tail of distribu-
tion function with deviations from the central line.

For POT analysis, GP distribution function is compared with Gamma
and Log-normal distribution functions and the results of AIC and BIC tests
are shown in Table 11. In this analysis, threshold wave height of 0.8m
and time span of 3 days are chosen. Q-Q plots (Fig. 21) are also drawn to
verify results obtained from AIC and BIC tests. It shows that none of
distribution functions are suitable for POT analysis except GP distribu-
tion function, which can be considered as a suitable tool for POT analysis
of the data.

5.3. Length of data used in the analysis

The length of data included in the analysis can also play a significant
role in obtaining the proper design wave height. Therefore, a sensitivity
analysis is performed in terms of sample duration, by using 10, 19, 28 and
37 years datasets corresponding to the datasets during 1979–88,
1979–97, 1979–2006 and 1979–2015, respectively. The design wave
heights with a return period of 100 years are obtained using GEV,
Gamma and GP distribution functions.

It can be seen from Table 12 that longer dataset results in higher
design wave height, which contradicts the findings of Mazas and Hamm
(2011) that shorter dataset produced higher design wave height. This
contradiction is mostly due to the property of data being analyzed. Since
extreme events are unpredictable, higher design wave height can be
obtained in smaller datasets if extreme storm events happen during that
time period. In addition, a minor difference (2% maximum difference)
between design wave heights obtained from 28-and 37-year dataset is
obtained, suggesting that 28 years might be sufficiently long for extreme
wave height analysis. The maximum difference intensifies for 10- and
19-year dataset compared to 37-year dataset by 18% and 14%, respec-
tively. Therefore, these datasets can not provide good estimates of design
wave height for 100-year return period.

Based on the analyses performed in this study, Gamma, GEV and GP
distribution functions are selected to draw contours of design wave



Fig. 22. Contours of design wave heights (in meters) with 100 years return period determined by using (a) Gamma (b) GEV (annual maxima) (c) GP distribution
functions (u¼ 1m, Δt ¼ 3 days) inside Chesapeake Bay.
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heights with 100-year return period for the entire Chesapeake bay. The
results are shown in Fig. 22. The design wave height generally decreases
from lower bay to the upper bay, with design wave height between 1.5
and 2m in the upper bay. It increases substantially in the lower bay and
reaches up to 3.25m. Gamma distribution function gives a more con-
servative estimate of design wave height (Fig. 22a) compared to GEV and
GP distribution functions (Fig. 22b–c). GP distribution function fails to
provide design wave height in shallow areas since its analysis is based on
a threshold value that might be greater than largest waves in those areas.

6. Conclusions

In this paper, SWAN wave model was applied to reconstruct the wave
climate in Chesapeake bay during 1979–2015. The spatial and temporal
variabilities of the simulated wave heights in the bay were firstly
analyzed using EOF analysis, regression analysis as well as cumulative
distribution function analysis. EOF analysis performed on daily-averaged
SWHs showed seasonal variability of wave heights in Chesapeake bay
with larger wave heights in winter season. It also revealed that the lower
bay experienced more significant variations in wave height. Extreme
storm events such as hurricanes and tropical storms could be detected
from the first mode of PC. Regression analysis on SWHs at Stingray Point
suggested that there was a steady increase of extreme wave heights in the
Chesapeake Bay, however, the long-term change was not significant. The
continuous increase of extreme waves was further verified by empirical
cumulative distribution function analysis for two separate periods:
1979–1997 and 1998–2015, in which a 9% increase in extreme wave
height was observed in 99.5 percentile. These findings were confirmed
by obtaining 99.5 percentile for the entire bay. Results suggested that
except lower bay, where there was a maximum of 0.27m decrease in
wave height, the rest of the bay received an average wave height increase
of 0.1m.

In the extreme value analysis, both GEV and POT methods were
applied to estimate design wave heights. The reliability of these methods
was extensively studied. The effects of key parameters such as threshold
value, time span as well as data length on the design wave heights were
evaluated. The GEV and POT analyses performed on annual and monthly
maxima and independent extreme waves with threshold of 1.0 m and
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time span of 3 days showed that design wave heights with 100-year re-
turn period evaluated from GEV for annual maxima data and GP model
were higher than those from monthly maxima data by 10%. Therefore,
annual maxima and POT approaches provided a more conservative es-
timate of design wave height for design purposes. The effects of time span
and threshold on design wave height were examined by tests on different
time spans (3, 4, 5 and 6 days) and various thresholds (0.8, 0.9, 1, 1.1 and
1.2m). It was found that increasing time span leaded to larger design
wave height, and higher threshold resulted in higher design wave height.
Moreover, sensitivity analysis on data duration showed that a 28-year
dataset could provide an acceptable estimate of design wave height in the
bay. The performance of GEV and GP was also evaluated in terms of
fitting the data against various distribution functions including Weibull,
Gumbel, Gamma, Log-normal distribution functions using AIC/BIC test
and Q-Q plots. Results indicated that Gamma and GEV provided the best
fit for annual and monthly data, while GP distribution function gave the
best fit when POT analysis was conducted.
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