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ABSTRACT

To meet the Biden-Harris administration’s goal of deploying 30 GW of offshore wind power by 2030 and 110GW by 2050, expansion of wind
energy into U.S. territorial waters prone to tropical cyclones (TCs) and extratropical cyclones (ETCs) is essential. This requires a deeper under-
standing of cyclone-related risks and the development of robust, resilient offshore wind energy systems. This paper provides a comprehensive
review of state-of-the-science measurement and modeling capabilities for studying TCs and ETCs, and their impacts across various spatial and
temporal scales. We explore measurement capabilities for environments influenced by TCs and ETCs, including near-surface and vertical pro-
files of critical variables that characterize these cyclones. The capabilities and limitations of Earth system and mesoscale models are assessed for
their effectiveness in capturing atmosphere–ocean–wave interactions that influence TC/ETC-induced risks under a changing climate.
Additionally, we discuss microscale modeling capabilities designed to bridge scale gaps from the weather scale (a few kilometers) to the turbine
scale (dozens to a few meters). We also review machine learning (ML)-based, data-driven models for simulating TC/ETC events at both weather
and wind turbine scales. Special attention is given to extreme metocean conditions like extreme wind gusts, rapid wind direction changes, and
high waves, which pose threats to offshore wind energy infrastructure. Finally, the paper outlines the research challenges and future directions
needed to enhance the resilience and design of next-generation offshore wind turbines against extreme weather conditions.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0214806

SIGNIFICANCE STATEMENT

To achieve the Biden-Harris administration’s goal of setting up
30 GW of offshore wind power by 2030 and aiming for 110 GW by
2050, it is important to build wind farms in U.S. waters that have high
wind energy potential. However, these areas often face hurricanes and
big storms. Understanding the risks these storms pose and building
strong, reliable wind farms are key. This paper reviews the tools and
methods used to study these storms and their effects on wind farms
and turbines. It looks at how well different models can predict the
impact of storms on the ocean and atmosphere, important for

designing safer wind turbines. We also discuss newer methods, like
using machine learning, to predict storm effects at different scales—
from large weather patterns down to individual turbines. The paper
highlights the tough conditions like very strong winds and big waves
that can damage wind farms. It stresses the need for more research to
make wind turbines that can withstand these extreme conditions.

I. MOTIVATION

The combined offshore wind energy potential of the United
States along the coasts of the North Atlantic, the Gulf of Mexico, and

J. Renewable Sustainable Energy 16, 052702 (2024); doi: 10.1063/5.0214806 16, 052702-1

Published under an exclusive license by AIP Publishing

Journal of Renewable
and Sustainable Energy

REVIEW pubs.aip.org/aip/rse

 29 O
ctober 2024 15:13:15

https://doi.org/10.1063/5.0214806
https://doi.org/10.1063/5.0214806
https://doi.org/10.1063/5.0214806
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0214806
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0214806&domain=pdf&date_stamp=2024-10-15
https://orcid.org/0000-0002-8916-4372
https://orcid.org/0000-0002-4695-5879
https://orcid.org/0000-0002-2320-2145
https://orcid.org/0000-0001-9906-7288
https://orcid.org/0000-0003-2924-815X
https://orcid.org/0000-0002-2376-0868
https://orcid.org/0009-0004-2180-5913
https://orcid.org/0000-0003-1142-7184
https://orcid.org/0000-0001-7592-7191
https://orcid.org/0000-0002-5702-421X
https://orcid.org/0000-0002-3362-9492
https://orcid.org/0000-0002-2444-3039
https://orcid.org/0000-0002-1746-0746
https://orcid.org/0000-0002-2612-7590
mailto:jialiwang@anl.gov
https://doi.org/10.1063/5.0214806
pubs.aip.org/aip/rse


Hawaii exceeds 1000 GW (Musial et al., 2020). However, exposure to
extreme weather conditions limits deployment opportunities due to a
number of turbine design challenges. For example, offshore wind tur-
bines (OWTs) sited along the eastern coast of the United States and
Gulf of Mexico can be vulnerable to major tropical cyclones (TCs,
such as hurricanes of Category 3 and above on the Saffir–Simpson
intensity scale). In addition, as TCs travel into higher latitudes, they
often interact with midlatitude systems such as upper-level troughs or
extratropical cyclones (ETCs) and transform from a symmetric,
warm-core tropical system to an asymmetric, cold-core extratropical
system (Jones et al., 2003; Evans et al., 2017). This process, referred to
as extratropical transition (ETT), involves modifications to the TC
itself such as the expansion of the asymmetric distribution of wind and
precipitation, impacting a wider area as it transitions. This implies that
the risks associated with tropical storms remain significant even in the
midlatitudes, such as the northeastern continental shelf of the United
States and offshore. Both TCs and ETCs can produce extreme wind
gusts, high waves, heavy precipitation, and frequent and intense light-
ning. These hazardous conditions may affect an entire OWT, includ-
ing its blades, tower, foundations, and associated substations.
However, the nature of extreme weather makes it difficult to assess the
true vulnerability of OWTs, because historical records and measure-
ments of the extreme weather loadings may be limited. For example,
hundreds of OWTs (80%) in the North Sea required extensive repairs
because weather extremes exceeded predictions (Diamond, 2012).

Although global offshore wind has a deployed capacity approach-
ing 50GW, more than half of this capacity is in Europe, where there is
no major hurricane risk. Almost all of the remainder of this capacity is
installed in Asia, but these OWT arrays are still too recent to provide
sufficient data for studying the impacts of major TCs on installation,
operation, and maintenance of OWTs. To meet the Biden-Harris
administration goal to deploy 30GW of offshore wind energy by 2030
and set the nation on a path to 110GW or more by 2050, robust risk
assessments are greatly needed offshore of the United States. Turbines
and their support structures must be able to withstand high loads that
may occur due to various conditions. These include extreme micro-
scale turbulence, high wave conditions, storm surge, wind/wave mis-
alignment, and, more generally, low-cycle fatigue. Low-cycle fatigue
results from repeated buffeting or loads outside of buffeting.
Additionally, these structures must endure other events involving com-
plex combinations of these external load drivers. The current design
approach is based on wind turbine standards established by the
International Electrotechnical Commission (IEC). For aerodynamic
load analysis, a Tropical Class turbine (T-turbine) is defined on the
assumption that only the reference 10-min average wind speed, needs
to be adjusted from 50 to 57 m s�1. Similarly, in TC-affected regions,
an additional subset of marine conditions related to the wave and com-
bined wave/current design loads have been recommended by the
standards (IEC, 2019). Although these updates and recommendations
for the design standard may ultimately require turbine designers to
strengthen blades, towers, and other components, their simplicity still
ignores the actual complexity of a hurricane event and the possibility
that other damaging design load cases might exist (as listed above). For
example, site-specific assessments are unavailable in these standards
but are greatly needed to determine the reference wind and wave
parameters that are unique to a certain region. An additional challenge
is assessing how the changing climate will affect these extreme events

beyond the next two decades (over an offshore turbine’s �20-year
operational life cycle), given that the observation data shows a statisti-
cally significant increasing trend for the intensity and the impacts of
severe hurricanes over the North Atlantic (Knutson et al., 2007).

As a first step toward developing a more complete picture of the
impact of TCs and ETCs on U.S. offshore wind energy, this study con-
ducted a comprehensive review of the state-of-the-art and existing lit-
erature. Specifically, as outlined in Fig. 1, we describe current
observational capabilities (Sec. II) and current state-of-the-science
modeling of these extreme events at the Earth system scale, mesoscale
or weather scale, microscale or turbine scale (Sec. III), plus the use of
artificial intelligence (AI) and machine learning (ML) for generating
TC/ETC associated extremes (Sec. IV) efficiently for OWT risk assess-
ment. Section V reviews projected changes in TC/ETC in future cli-
mate using various modeling approaches. Risk assessment is described
in Sec. VI. Section VIII enumerates gaps in our scientific knowledge.

II. CURRENT OBSERVATIONAL CAPABILITIES

OWTs are affected by winds through the rotor swept area, precip-
itation, and wave action. In this section, we describe the current state
of satellite and in situ measurements within TC boundary layers that
measure these quantities. The information in this summary is provided
by Topic 1 of the Tenth International Workshop on Tropical Cyclones
held in 2022 (Ricciardulli and Howell, 2022; Holbach and Bousquet,
2022; Wimmers and Duong, 2022; and Herndon and Langlade, 2022).
National Oceanic and Atmospheric Administration (NOAA) and the
U.S. Air Force routinely send operational reconnaissance aircrafts into
TCs in the North Atlantic to measure intensity and structure. These
flights become more frequent when a given TC threatens to make
landfall. The aircraft typically measure flight-level winds (usually at
700 hPa) directly and near-surface winds remotely using the Stepped-
Frequency Microwave Radiometer. Dropsondes are released at the
radius of maximum winds and in the eye to obtain vertical profiles of
temperature, pressure, and winds from the surface to flight level.
NOAA aircraft are equipped with tail Doppler radars, which are used
to create three-dimensional wind and reflectivity analyses at synoptic
time scales (i.e., 6-h intervals). In addition to the operational flights,
research missions by government agencies and industry are also con-
ducted during the North Atlantic hurricane season, with a variety of
different measurement platforms. A relevant platform to this study is
the Imaging Wind and Rain Airborne Profiler, which measures ocean
height, significant wave height, and three-dimensional wind and reflec-
tivity profiles from below the aircraft (700 hPa or approximately 3000
m above sea level) to the surface. In addition, lidars have been
deployed on aircraft during research missions, such as the Airborne
Doppler Wind Lidar; these have higher vertical resolution than radars
(�50 m). From 2015 to 2016, wind profiles from this instrument were
obtained in several hurricanes from 25 m to 7 km above sea level, with
the most frequent measurements between 1500 and 2000 m (Bucci
et al., 2018; Zhang et al., 2018).

In recent years, a number of new platforms have begun taking
measurements of the upper ocean and support analyzing and forecast-
ing TC intensity, structure, track, and their associated hazards
(Holbach et al., 2023). Underwater gliders can take measurements to a
depth of 1000 m at high-temporal frequency. Ocean profilers (e.g.,
bathythermographs) are deployed from aircraft to measure the thermal
structure of the upper ocean. Deployed through the Argo program,
Autonomous Profiling Explorer floats routinely measure the upper
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ocean and its response to hurricane passages. The Wide Swath Radar
Altimeter measures significant wave height, wavelength, propagation
direction, and wave spectra. The Ka-band interferometric radar mea-
sures ocean height and low to moderate wind speeds. Similarly, new
observational platforms have been developed for probing the TC
boundary layer. Uncrewed airborne systems (UASs) have been
deployed from reconnaissance aircrafts to take wind, pressure, and
temperature measurements in the boundary layer. One finding of these
UASs is the existence of extreme wind gusts that can significantly
exceed the best-track hurricane intensity. Uncrewed sail drones are
used to sample the upper ocean and near-surface underneath the hur-
ricane eyewall. Balloons (e.g., Aeroclippers) have been deployed to loi-
ter for long periods of time and take low-level wind measurements,
although their movement is not controlled. If deployed in the right
place at the right time, the balloons can move with the low-level winds
into the eyewall and eye regions. Global sounding balloons can fly for
weeks and vertically profile the atmosphere from 200 m to 20 km
above the surface.

Satellites in geostationary and polar orbits routinely take a variety
of TC-related measurements that allow inferences about a TC’s inten-
sity and structure. Moreover, satellites provide sufficient information
to characterize important aspects of a TC’s boundary layer. Synthetic
aperture radars (SARs) measure the ocean surface at very high resolu-
tion (50–100 m), and backscatter can be used to infer the near-surface
wind field of the TC. They can retrieve measurements of winds up to
approximately 70 m s�1. L-band radiometers can retrieve winds with
coarser spatial resolutions of 40–50 km, although the main advantage
of L-band radiometers is the wider swath (1000 km) and more contin-
uous measurements than SARs. In a similar vein, the large swath of
scatterometers (1000 km) can be used to map the TC outer wind field.
Microwave imagers provide TC centers, cloud pattern/precipitation
information, wind speed, and sea surface temperatures (SSTs). The
new generation of geostationary satellites (e.g., Himawari-8/9) provide
much higher temporal resolutions (10min for the full disk, and 2-min
frequencies for targeted locations) than previous satellites. Recently,
small and cube satellites have extended the spatial and temporal

FIG. 1. A conceptual overview of the modeling and measurement tools used to analyze offshore weather conditions during storm events.
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coverage of wind measurements over Earth. One recent example is the
National Aeronautics and Space Administration’s Cyclone Global
Navigation Satellite System constellation, which measures ocean sur-
face winds.

The NOAAHurricane Research Division maintains an archive of
datasets discussed in this review section, specifically for North Atlantic
and eastern North Pacific TCs, accessible at https://www.aoml.noaa.
gov/data-products/. Operational warning centers, such as the National
Hurricane Center, employ both in situ and satellite measurements to
generate objective analyses of tropical cyclones. These analyses facili-
tate the determination of key metrics, including the maximum 1-min
sustained wind speed and various wind radii, encompassing the radius
of maximum winds as well as the extents of winds reaching 34, 50, and
64 knots.

III. PHYSICS AND NUMERICAL MODELING STUDIES

Over the last two decades, there has been steady improvement in
TC track forecasting, mostly due to improvements in dynamical mod-
els, better assimilation of satellite data, improved model physics, and
increased resolution. However, improvement in TC intensity predic-
tion has been slower (Cangialosi, 2023; Wada and Usui, 2010).
Cangialosi (2023) demonstrated that over the past three decades
(1990–2022), the 24–72-h track forecast errors in the North Atlantic
basin have been reduced by about 75%, while the 48-h intensity fore-
cast errors decreased by 30%. Previous numerical studies based on
coupled atmosphere–ocean simulations or forecasts from world lead-
ing agencies such as Integrated Forecast System (IFS) of European
Center for Medium-Range Weather Forecasts (ECMWF) (Mogensen
et al., 2017), Non-Hydrostatic Model of Japan Meteorological Agency
(Wada et al., 2018), Global/Regional Assimilation and PrEdiction
System (GRAPES) of China Meteorological Administration (Zhang
and Shen, 2008), Hurricane Weather Research and Forecasting
(HWRF) of NOAA (Bernardet et al., 2015; Mehra et al., 2018), and
Geophysical Fluid Dynamics Laboratory (GFDL) regional coupled
model of NOAA (Bender and Ginis, 2000) have demonstrated the
important role of ocean coupling in TC intensity prediction.
Benefitting from an interactive ocean model and data assimilation,
weak TCs in ECMWF Reanalysis version 5 (ERA5) (Hersbach et al.,
2020) were well reproduced. However, challenges remain, and the
operational numerical models tend to underestimate strong TCs
(Yamaguchi et al., 2017) mainly due to coarse grid spacing, poor for-
mulations of the surface and boundary layers, and insufficient under-
standing of the coupled ocean–atmosphere system (Chen et al., 2007).
Sections IIIA–III C review the research progress of physics numerical
modeling at global and regional scales to the wind farm and even wind
turbine scales. Particular attention is given to the models’ capability to
realistically simulate the TC and ETC and their associated extreme
winds and waves through high spatial resolutions and multi-way inter-
actions between atmosphere, ocean, and waves.

A. Earth systemmodels

Earth system models are useful tools for studying various aspects
of TCs. These model help analyze changes in frequency and geographi-
cal distribution, the role of ocean–atmosphere interactions, and project
future TC activity under different greenhouse gas emission scenarios.
TCs develop and evolve over a wide range of spatiotemporal scales:
convective processes within a storm’s core occur within a few

kilometers, while the larger environment influencing TCs spans tens of
thousands of kilometers. The lifespan of an individual cyclone is mea-
sured in hourly and daily timescales, though the large-scale environ-
ment impacting cyclones can vary over seasonal to decadal timescales.
On subseasonal timescales, there are three main drivers that affect the
North Atlantic TC and ETC activities through changing the large-scale
upper-level divergence, vertical wind shear, and relative humidity.
They are the convectively coupled equatorial waves (e.g., Madden–
Julian Oscillation (MJO) (Madden and Julian, 1972), the quasi-
biweekly oscillation (QBWO) (Krishnamurti and Bhalme, 1976), and
extratropical Rossby wave breaking (RWB) events (Zhang et al., 2016;
Papin et al., 2020), which occur at the timescale of 30–90, 10–30, and
5–15 days, respectively. On seasonal timescales, the dominant driver of
global TC activity is the El Ni~no Southern Oscillation (Gray, 1984;
Julian and Chervin, 1978), which has significant effects on North
Atlantic TC activity through modulation of SSTs, atmospheric stabil-
ity, and vertical wind shear. Most current Earth System Models
(ESMs) use a grid spacing of approximately 100km (Palmer, 2014;
Schneider et al., 2017). Although these ESMs can resolve the large-
scale environment of TCs, the representation of some essential TC
characteristics (e.g., intensity) is poor (Camargo, 2013). The primary
cause of inaccuracies in these models stems from not adequately
resolving clouds and the vertical heat transport processes. Vertical heat
transport relies mainly on convection, which is not well captured at
horizontal scales larger than a few kilometers (Palmer, 2014).
Therefore, high-resolution climate models are necessary to accurately
represent critical processes involved in TC formation and development
(Camargo et al., 2020). Several modeling centers have developed
high-resolution general circulation models (GCMs) with the goal of
improving the representation of TCs (Heming et al., 2019) and have
participated in the High-Resolution Model Intercomparison Project
(HighResMIP) (Haarsma et al., 2016) as part of the Coupled Model
Intercomparison Project Phase 6 (CMIP6). Studies using these GCMs
found that they can reasonably capture observed characteristics of TCs
when using a grid spacing of at least 0.25� (Bacmeister et al., 2014;
Shaevitz et al., 2014; Roberts et al., 2015; Roberts et al., 2020; Wehner
et al., 2014; Moon et al., 2022; and Rendfrey et al., 2021), although
there are still low-intensity biases associated with models’ physical
parameterizations and/or dynamical cores (Reed and Jablonowski,
2011; Kim et al., 2014). Balaguru et al. (2020) compared a fully coupled
atmosphere–ocean model, Energy Exascale Earth System Model
(E3SM), at low- and high-resolution (Caldwell et al., 2019; Golaz et al.,
2019) and demonstrated that TC frequency, lifetime maximum inten-
sities, and the relative distribution among the different basins are
improved considerably in the high-resolution configuration (grid spac-
ing of �0.25�) as opposed to the low resolution (grid spacing of �1�).
In addition, ocean–atmosphere coupling in models is essential since
ocean feedback to the atmosphere significantly affects TC intensity.
Tsartsali et al. (2022) investigated the horizontal resolution depen-
dence of ocean–atmosphere coupling along the Gulf Stream using
HighResMIP protocol and found that increasing ocean and/or atmo-
sphere resolution leads to enhanced ocean–atmosphere coupling and
improved agreement with reanalysis and observations. Zhang et al.
(2023a) used the Community ESM (CESM) at high spatial resolutions
(down to 3 km for the ocean and 5 km for the atmosphere) to capture
major weather–climate extremes in the atmosphere and ocean, stress-
ing the importance of permitted clouds and ocean sub mesoscale
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eddies in modeling TCs and eddy–mean flow interactions. Moreover,
ocean surface gravity waves are a crucial aspect of the physical pro-
cesses at the atmosphere–ocean interface. The wave processes can
influence momentum and energy fluxes, gas fluxes, upper ocean mix-
ing, sea spray production, ice fracture in the marginal ice zone, and
Earth albedo (Cavaleri et al., 2012). Recent studies have demonstrated
that incorporating aspects of surface waves into ESMs can improve
skill performance, especially in simulating SST, wind speed at 10m
height, ocean heat content, mixed-layer depth, and the Walker and
Hadley circulations (Law Chune and Aouf, 2018; Song et al., 2012;
Shimura et al., 2017; Qiao et al., 2013; Fan and Griffies, 2014; and Li
et al., 2016).

B. Mesoscale or regional-scale models

Mesoscale or regional-scale models, with higher resolution than
global models, are used to gain a more detailed understanding the TC
system. These models are useful for analyzing fine-scale dynamics and
structure, including eye-wall formation, rain bands and wind distribu-
tion, and their interaction with local features such as coastal and inland
areas. This section reviews atmosphere, ocean, and wave models collec-
tively, which predict the dynamic and thermodynamic variables
describing a TC state, including TC intensity and track, at spatial scales
of a few to dozens of kilometers and over daily or smaller time scales
(Ooyama, 1990). As a bottom boundary of the atmosphere, the ocean
and waves have significant effects on the dynamics and thermodynam-
ics of the atmosphere through surface roughness and heat exchange.
TCs and strong ETCs impose a wind-driven wave environment upon
the sea. Consequently, the surface roughness is strongly correlated
with the near-surface wind speed. In this regime, over 95% of the
energy from surface wind stress is transferred into the ocean, which
drives strong ocean currents. The remaining energy is propagated
away by waves (Sullivan and McWilliams, 2010). This energy transfer
is thought to be primarily caused by the intermittent breaking of
waves, which diffuses this energy from the surface via fast winds.
Wave breaking may also influence the heat exchange through its gen-
eration of spray. Indirectly, wave-induced vertical mixing during TCs
brings colder waters up from the subsurface, cooling the SST and dissi-
pating the TC intensity. Processes not related to wind–wave interac-
tions can also affect the upper ocean, including sub-mesoscale
upwelling and downwelling, internal waves, storm surges, and tides.
Atmosphere-only models that lack ocean and wave coupling cannot
realistically represent the energy transfer and interactions between the
atmosphere and the ocean and its waves. As such, TC research and
prediction increasingly employed coupled atmosphere–wave–ocean
modeling in the late 2000s (Chen et al., 2007; Warner et al., 2010; Liu
et al., 2011; and Zhang et al., 2009a). These modeling systems, which
remain among the state-of-the-art tools called upon today (e.g., Wu
et al., 2019), are composed of independently developed atmosphere
general circulation, ocean general circulation, and phase-averaged
spectral wave model components (Pringle and Kotamarthi, 2021).
Given the significance of surface gravity waves in both global- and
regional-scale modeling, Secs. III B 1 and IIIB 2 provide a comprehen-
sive review of the direct and indirect impacts of waves on TC
prediction; Sec. IIIB 3 reviews the most well-validated, fully coupled
atmosphere–ocean–wave models; Sec. III B 4 reviews the impacts of
spatial resolution in regional-scale models on major tropical cyclones.

1. Direct effects of waves through wave–atmosphere
interaction

Waves characterize the surface roughness (z0) of the ocean and
are important for modeling winds above it. Without coupling between
the atmosphere and waves, z0 or the drag coefficient, Cd , are calculated
as a function of wind speed alone (Charnock, 1955; Large and Pond,
1981; and Andreas et al., 2012). When coupled with ocean wave mod-
els, z0 can instead be computed using information directly inferred
from the waves. Various formulations (Pringle and Kotamarthi, 2021)
have been proposed to compute z0, using wave steepness (Taylor and
Yelland, 2001), wave age (Drennan et al., 2005; Oost et al., 2002), or
two-dimensional wave spectra-dependent (Janssen 1989; Wu et al.,
2019). Some formulas to calculate z0 are shown in Table I in the
Appendix. For instance, in the Coupled Ocean–Atmosphere–Wave–
Sediment Transport (COAWST) Modeling System (Warner et al.,
2010), the Taylor and Yelland formulation (Taylor and Yelland, 2001)
was shown to enhance surface roughness, reducing the strength of the
TC compared to experiments when the surface roughness is only cal-
culated as a function of wind (Charnock, 1955). Furthermore, Zambon
et al. (2021) compared the wave steepness and wave-age-based formu-
lations and showed that the wave-age-based formulation in Oost et al.
(2002) worked best for a Hurricane Florence (2017) hindcast, while
Prakash et al. (2019) demonstrated that the wave-age-based formula-
tion in Drennan et al. (2005) worked best for TC Vardah (2016).
Another investigation of Hurricane Ida (2009) by Olabarrieta et al.
(2012) also demonstrated that the predicted TC intensity and strength
are considerably influenced by sea surface roughness parameteriza-
tions. Although surface roughness is associated with wave form, at
very high wind speeds (>30 m s�1 at 10 m), surface roughness has
been shown to saturate out due to spray generation and/or the flatten-
ing of wave crests (Donelan, 2004; Sullivan and McWilliams, 2010). In
this case, the surface roughness ðz0Þ or drag coefficient ðCdÞ does not
continue to increase with wind speed at high winds, and an upper limit
to z0 or Cd is often applied. These empirical parameterization methods
are easy to be implemented in regional-scale models. However, since
they are based on limited measured data, they cannot represent all the
complex wind and wave conditions, especially during strong TCs.
Therefore, wave boundary layer models (WBLM) that directly calcu-
late the momentum transfer between winds and waves and currents
within the wave boundary layer are also used (e.g., Janssen, 1991;
Moon et al., 2004; Reichl et al., 2014; Chen and Yu, 2017; Du et al.,
2017; Lars�en et al., 2019; and Du et al., 2022). Using WBLM, Moon
et al. (2004) showed that while the drag coefficient increases with wind
speed at lower wind speeds, this increase significantly slows down at
higher wind speeds, eventually leveling off or even decreasing in some
situations. In addition, the drag coefficient has a greater sea state
dependence for fast-moving TCs compared to slow-moving storms or
simple fetch-limited seas (Reichl et al., 2014). To capture the decreas-
ing tendency of the wind stress coefficient under storm conditions,
Chen and Yu, 2016 incorporated the energy dissipation due to the
stratification of sea spray into the WBLM. Du et al. (2017) further
improved the WBLM by using it as a wind-input source function for
the wave model, ensuring that the wave growth within the WBLM is
consistent with the wave growth in the wave model. Chen et al., 2013
and Chen and Curcic, 2016 developed a directional wind–wave cou-
pling method to include effects of directionality of the wind and waves
in hurricanes. This coupling approach considers short-wave spectral
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tails that produce surface stress and affect storm structure and intensity
but are unresolved in most other wave models.

Another direct effect of waves on the atmosphere is that wave-
breaking-induced sea spray may influence TC characteristics through
changing momentum, heat, and moisture fluxes (Fairall et al., 1994;
Lighthill, 1999; Makin, 2005; Andreas et al., 2015; and Prakash et al.,
2019). The relative importance of sea spray for predicting the TCs is
still debatable. For example, Perrie et al. (2004, 2005) argued that sea
spray can enhance the air–sea heat fluxes, which moderately increased
the strength of the extratropical Hurricane Gustav in 2002 based on a
coupled ocean–atmosphere–sea spray model (Andreas, 2003). Richter
and Stern (2014) calculated the surface fluxes of enthalpy based on
more than 2000 dropsonde profiles, and using the Monin–Obukhov
similarity theory, indicated that the surface enthalpy fluxes are domi-
nated by sea spray within TCs. However, Prakash et al. (2019) showed
that the incorporation of sea spray flux has only a marginal influence
on the intensity of a moderate cyclone. Sea spray can also indirectly
influence the precipitation and intensity of tropical cyclones through
sea salt aerosols (Hoarau et al., 2018; Zhao et al., 2022).

2. Indirect effects of waves through wave–current
interaction

Waves can also influence the bottom boundary condition for TCs
indirectly through wave–current interaction, which affects surface cur-
rents (Smith, 2006; Lane et al., 2007; Olabarrieta et al., 2010; and
Mellor, 2016) and the SST through radiation stress, stokes drift, and
wave-induced vertical mixing. Wave-induced mixing is the strongest
effect compared to wave-induced roughness and Stokes–Coriolis drift
on SST (Breivik et al., 2015). Wave-induced mixing is primarily caused
by wave breaking and wave orbital motion (Sullivan and McWilliams,
2010; Qiao et al., 2004; and Babanin, 2006). Wave breaking-induced
mixing occurs near the sea surface (Terray et al., 1996; Toba and
Kawamura, 1996) and typically has a limited impact on SST, heat
fluxes near the surface (Zhang et al., 2007; Craig and Banner, 1994;
D’Alessio et al., 1998; and Burchard, 2001), and the intensity and size
of TCs. Wave orbital motion-induced mixing (also called non-break-
ing-wave-induced mixing), on the other hand, penetrates much deeper
than wave breaking-induced mixing (Chen et al., 2007; Qiao et al.,
2004; Babanin, 2006) and could reduce SST by bringing cold water
upward through enhanced vertical mixing and mixed-layer depth,
thus reducing TC intensification (Bruneau et al., 2018; Li et al., 2014;
Zhao et al., 2017; Zhang et al., 2022). Without considering wave-
induced mixing in ocean models, the SST and hence TC intensity can
be overestimated (Qiao et al., 2004; Kantha and Clayson, 1994; Martin,
1985; Babanin and Haus, 2009; Pleskachevsky et al., 2011; Toffoli
et al., 2012; and Aijaz et al., 2017). Indeed, Zhang et al. (2022) demon-
strated that the wave-breaking-induced turbulence is negligible com-
pared to wave orbital motion-induced mixing, although for some
shallow mixed-layer conditions, the effects of wave-breaking-induced
mixing might be also significant (Mellor and Blumberg, 2004; Sun
et al., 2005; and Huang et al., 2011). The turbulence driven by wave
orbital motion can be described using the one-dimensional formula in
Ghantous and Babanin (2014) and included in two-equation turbu-
lence closure schemes such as the Generalized Length-Scale (Umlauf
and Burchard, 2003). The wave orbital motion-induced mixing is
implemented into turbulence models by modifying the vertical viscos-
ity or turbulent kinetic energy (TKE) source term (Song et al., 2012;

Qiao et al., 2004; Wang et al., 2010; and Babanin, 2011). With a cou-
pled hurricane–ocean–wave modeling system, Aijaz et al. (2017) found
that the non-breaking wave parameterization has different impacts on
the weak and the strong sides of the storm track.

3. Regional-scale atmosphere–ocean–wave models
applied to simulate TCs

The COAWST modeling system (Warner et al., 2010) is widely
recognized as a leading coupled modeling system. It integrates the
Advanced Research Weather Research and Forecasting (WRF) model
(Skamarock et al., 2005; Powers et al., 2017) for atmospheric dynamics,
the Regional Ocean Modeling system (ROMS) (Shchepetkin and
McWilliams, 2005; Shchepetkin and McWilliams, 2009; and
Haidvogel et al., 2008) for ocean circulation, the Simulating WAves
Nearshore (SWAN) (Booij et al., 1999) spectral wave model for near-
shore wave simulation, and the Community Sediment Transport
Modeling System (Warner et al., 2008) for sediment transport studies.
The SWAN model can be replaced with WAVEWATCH III (WW3)
with similar capabilities (Pringle and Kotamarthi, 2021). These models
communicate and share data through the Modeling Coupling Toolkit
(MCT) (Jacob et al., 2005; Larson et al., 2005). Another significant
coupled model is the First Institute of Oceanography Atmosphere-
Ocean-Wave (FIO-AOW) (Zhao et al., 2017) system. This model inte-
grates WRF for atmospheric simulation, the Princeton Ocean Model
(POM) (Blumberg and Mellor, 1987) for ocean dynamics, and the
third-generation Marine Sciences and Numerical Modeling
(MASNUM) wave model (Yuan et al., 1991; Yuan et al., 1992) through
the Community Coupler version 1 (C-Coupler1) (Liu et al., 2014).
Additionally, several models have been developed based on the
Nucleus for European Modeling of the Ocean (NEMO) (Madec and
NEMO Team, 2016) for ocean circulation. Notable examples include
the Chemical Hydrological Atmospheric Ocean wave System
(CHAOS) (Varlas et al., 2020), the Uppsala University Coupled model
(UU-CM) (Wu et al., 2019), and IFS-NEMO-Wave Model (WAM)
(Breivik et al., 2015). CHAOS couples the WRF model for atmosphere
and the ocean WAM cycle 4.5.4 (WAMDI Group, 1998) for waves
through the OASIS3-MCT version 3.0 coupler (Valcke et al., 2015;
Craig et al., 2017). IFS-NEMO-WAM coupled the global numerical
weather prediction model, IFS of the ECMWF, to model the atmo-
sphere. In contrast, UU-CM utilizes WW3 for wave simulations and
considers more processes such as the feedback of ocean/ice-induced
water level changes on waves and the impact of waves on oceanic and
ice dynamics, including surface Stokes drift, wave-supported stress,
and the transfer of momentum and TKE from waves to ocean
currents. For detailed descriptions of the coupling components, cou-
pler used, and variables exchanged among different models, refer to
Table II in the Appendix.

4. Spatial resolution impacts

Similar to Earth system models (Sec. III A), grid spacing in
regional models continues to attain smaller scales as computational
resources increase in time. Improvements in the representation of
inner-core dynamical processes are a multi-scale problem, as the TC
inner core interacts with the larger-scale environment (Wang and Wu,
2004; Davis et al., 2008). Resolving the inner core of a TC with a grid
spacing of less than 4 km has allowed the explicit representation of
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convection, which has resulted in a better depiction of TC structure
(Fowle and Roebber, 2003). Gopalakrishnan et al. (2012) demon-
strated improvements in TC intensity forecasts by decreasing nested
grid spacing from 9 to 3 km using HWRF. In the COAWST modeling
framework, the atmospheric WRF model also allows for a moving
nested domain following the hurricane center. This, in turn, allows for
continuous higher resolution of the TC inner core (Olabarrieta et al.,
2012).

C. Microscale models

Whereas Secs. IIIA and III B focus on global- and regional-scale
modeling capabilities for TCs and ETCs, in order to design hurricane-
resilient wind energy systems, the structure of the microscale
turbulence within a hurricane and at the turbine scale must be better
understood. Currently, there are only limited microscale turbulence
data available from TCs and ETCs at heights relevant to modern tur-
bines, which reach altitudes from 50 m to 300 m (He et al., 2022). This
is because surface-based measurement stations/devices or meteorologi-
cal towers often incur damage during hurricane passage. Dropsonde
data, on the other hand, are coarser in resolution and suffer from the
inability to take longer-duration point measurements at a fixed loca-
tion (as the wind turbine would experience the winds). Therefore,
resorting to turbulence-resolving microscale simulations, namely,
large-eddy simulation (LES), of the hurricane boundary layer is
becoming increasingly important.

The structure of microscale turbulence in a hurricane boundary
layer is an active field of research (Zhang et al., 2009b; Montgomery
and Smith, 2017; Huang et al., 2018). Sub-kilometer-scale features of
hurricane wind fields such as the organized turbulence structures of
meso-vortices can create significant and unforeseen loads on OWTs.
Similarly, roll vortices, a series of large-scale turbulent eddies that align
along the mean wind and exhibit wavelengths varying from 200 to
over 3000 m, have been found to exhibit strong fluxes that can change
the hurricane structure and damage OWTs through intense surface
winds. Although these roll vortices can be observed in the field using
measurements from SAR (Huang et al., 2018; Foster, 2005), Doppler
weather radar (Gall et al., 1998), and aircraft data (Tang et al., 2021),
many of their characteristics are extremely difficult to measure during
actual storms because they occur in or near the eyewall of the hurri-
cane where wind speeds are extremely high, and observations are diffi-
cult to make. Moreover, observations of the distribution and lifetime
of these meso-vortices may also require simultaneous measurement of
wind speed and direction over spatial domains measured in the tens of
kilometers. LES thus has been employed to resolve the most important
scales of flow and approximate other smaller scales of turbulence.

Examples of work on idealized hurricane LES include that of
Rotunno et al. (2009), Ito et al. (2017), Li and Pu (2023), Li et al.
(2021), and Ren et al. (2020, 2022). The work of Rotunno et al. (2009)
is one of the earliest LES studies of a hurricane using idealized WRF
with inner LES nests to better understand horizontal turbulent diffu-
sion in hurricanes, which can then inform the turbulence model in
mesoscale models used to simulate hurricanes. They show that a grid
of roughly 100-m horizontal resolution is required to even begin to
adequately resolve turbulence. By resolving turbulence, the mean
intensity of the storm is decreased, but peak gusts are increased com-
pared to results from mesoscale simulations in which turbulence is
completely parameterized. It is noteworthy that hurricanes are

mesoscale processes, so their horizontal extent is in the hundreds of
kilometers, meaning hurricane LES at 100-m grid spacing can be
extremely costly, and some sort of grid nesting is required to keep the
cost tractable, especially when there is a desire to push to even finer
resolution.

Li and Pu (2023) and Li et al. (2021) used WRF-LES data of the
landfall of Hurricane Harvey to examine and try to understand the
mechanisms for roll vortices in hurricane boundary layers. Their simu-
lation shows extremely intense, organized roll vortices in the layer
between 200 and 3000 m above the surface and 20–40km from the
hurricane center, roughly aligned with the mean flow and spiraling
toward the core of the hurricane. They examine correlations between
roll strength and Richardson number, shear, inflow convergence, and
pressure perturbations throughout the storm. Ito et al. (2017) per-
formed additional work to characterize coherent roll structures
through idealized hurricane LES. Their work is somewhat different in
that they use a different code, the Japan Meteorological Agency Non-
Hydrostatic Model, and they characterize rolls in different ways than
Li and Pu (2023), so the two works complement each other.

Although there are many more non-wind-energy LES studies
meant to better characterize hurricanes and their turbulence (e.g.,
Stern et al., 2016; 2021), here we focus on wind-energy-specific ideal-
ized hurricane LES research, including that of Worsnop et al. (2017a,
2017b), and Sanchez Gomez et al. (2023)—all of which have helped
identify important wind turbine load drivers such as gust factors, spa-
tial coherence, velocity spectrum, shear profile, direction change, and
veer. With the inner 80� 80 km2 region of their domain using Cloud
model1, Worsnop et al. (2017a) showed that a Category-5 hurricane
simulation compares well with Hurricane Isabel in terms of mean
wind speeds, wind speed variances, and power spectra. Using the same
hurricane simulations (Worsnop et al., 2017a), Worsnop et al. (2017b)
demonstrated that near the eye wall, 3 s gusts can exceed 100 m s�1

with 10-min mean wind speeds exceeding 90 m s�1, agreeing with
analysis of dropsonde wind speeds (Stern et al., 2016). These values
exceed the IEC standard T-turbine design standards and would cause
extreme aerodynamic and structural loading that could lead to damage
or failure. Gust factors can reach 1.7 in the eyewall, larger than the fac-
tor commonly used (1.4). Wind direction can shift by 10�–30� in less
than 10min, which has implications on whether wind turbine yaw sys-
tems react fast enough to keep the wind turbine oriented for minimal
damage. Finally, Worsnop et al. (2017b) used the LES data to show
that significant wind veer across the rotor disk is possible in the hurri-
cane boundary layer and recommend that load simulations take the
wind veer into account. Furthermore, Sanchez Gomez et al. (2023)
recently conducted LESs on five hurricanes, ranging from Category 1
to 3, to study the hurricane boundary layer and its impacts on wind
turbines. The simulations were performed using a five-domain WRF
set up in which the inner two nests are LES. The SST is different in
each of the five cases, ranging from 26 to 34 �C. Increasing the surface
temperature causes both the near-surface wind speeds and the hurri-
cane eyewall radius to increase. Sanchez Gomez et al. (2023) showed
that hub-height (90m) wind gusts, which are defined using a 3-s time-
window mean, rarely exceed the IEC 61400-3 design standards
(Knutson et al., 2007) for Class I (50 m s�1) and Class T (57 m s�1)
wind turbines. However, the 10-min mean hub-height winds in
Category 2 (and 3) hurricanes exceed the design standards for Class I
turbines 85% (100%) of the time. Even for the Class T design
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standards, the simulated 10-min mean hub-height winds of a Category
3 storm often exceed the design standard, but this exceedance is less
frequent than for the Class I standards. They also show that wind
speed gusts are often higher near the eyewall of the Category 2 or 3
storms than accounted for in the design standards. Wind-speed verti-
cal shear was found to be nearly twice that specified in the standards.
The wind direction change only occasionally exceeds 68�, which is a
different conclusion than Worsnop et al. (2017a), who simulated a
Category 5 hurricane and found wind direction change across the
rotor layer can range between 15� and 50�.

The above-mentioned LES studies include the simulation of an
entire hurricane. Most of these types of simulations use a mesoscale grid
to simulate a realistic tropical cyclone. A microscale inner high-
resolution region is nested within the mesoscale region, where the large-
scale system can drive the smaller-scale turbulent and coherent eddies
within the nested LES region. Although it is very realistic, this kind of
modeling system is complex and computationally expensive. Bryan et al.
(2017) recognized the need for a simpler LES method to simulate hurri-
cane boundary layers that they term the “simple method.” In essence,
this technique uses a rectangular domain that represents a hurricane-like
boundary layer over a relatively limited region centered over a user-
specified radial distance from a tropical cyclone center. In particular, the
method is designed to represent regions outside of the inner-core eyewall
region (e.g., 40km from the hurricane center and beyond). Thus, in this
LES configuration, additional source terms are introduced to the
momentum equations of laterally periodic atmospheric LES. These
terms represent the large-scale bulk advection of momentum and cen-
trifugal effects of the hurricane on the boundary layer. Compared to
dropsonde data, this method captures the shape of the hurricane bound-
ary layer vertical profiles of velocity and turbulent stresses quite well, but
the method presently cannot portray the complex three-dimensional
flow near the eyewall where there is significant vertical motion and hori-
zontal heterogeneity. This “simple method” has been implemented in
the National Renewable Energy Laboratory (NREL) Simulator fOr
Wind Farm Applications and AMR-Wind codes. In addition, Ma and
Sun (2021) used the method with an atmospheric boundary layer LES
code to study the effects of hurricane boundary layer winds on electrical
transmission lines. More recently, Chen et al. (2021) extended the “sim-
ple” method to also nudge potential temperature and moisture profiles
toward specified values.

In summary, the microscale modeling of hurricane flows offers tre-
mendous potential in better understanding hurricane boundary layer
physics and depicting hurricane impacts on wind energy and beyond.
Hurricane LES therefore should facilitate better understanding of
hurricane-driven wind farm failures such as those outlined by Chen and
Xu (2016). It can also be used to help inform wind turbine design stand-
ards, especially in the realm of turbulence modeling, gust modeling, and
understanding of shear, veer, and wind direction changes. Ultimately,
hurricane microscale modeling can provide a means to develop and test
novel ideas in making hurricane-resilient wind energy systems.

IV. AI/ML-BASED DATA-DRIVEN MODELING STUDIES

Although the previously discussed numerical models can simulate
complex physical processes in both the atmosphere and ocean during
TC and ETCs, these models are computationally expensive and there-
fore limit the amount of data that can be created (i.e., hundreds of
years’ worth data) to accurately estimate risks from these storms.
Fortunately, AI and ML methods are in the midst of a renaissance,

finding innumerable applications in solving complex computational
problems in a much more efficient way. For example, AI/ML methods
have been used for exploring and extracting useful information from
gigantic datasets, automating and streamlining painstaking processes,
and proving adept at solving other difficult problems. Both private
industry and the geosciences, and more specifically the TC research
community, are adapting AI/ML technologies into many realms of
research and forecasting at a breathtaking pace. As long appreciated in
statistical modeling, AI/ML techniques do best when provided suffi-
ciently voluminous training data or when combined into other algo-
rithms that better constrain AI/ML models with empirical or known
physical processes. In particular, AI/ML has proven useful in diagnos-
ing a TC’s intensity and wind structure from satellite data, and in pre-
dicting important aspects of TCs such as formation, storm track,
intensity, wind structure, and even downstream applications such as
TC-driven ocean waves. We provide an overview of some of the AI/
ML successes in the TC diagnosis and prediction problems relevant to
offshore wind farms in Sections IVA—IVE.

A. Pointwise downscaling of winds

In offshore wind farm applications, it is advantageous to have an
accurate depiction of the winds experienced locally at a specific point or
in a very small area (e.g., a wind farm or an area with few wind turbines)
near the Earth’s surface. As a close cousin of diagnosing and predicting
wind structure, pointwise TC wind diagnosis and prediction is a relatively
new area of study in TCs. Nonetheless, significant headway has been
made recently. Overall, this application is a type of downscaling from a
coarser spatial–temporal analysis or model prediction to fine-grained spa-
tial–temporal scales relevant to wind turbines. One promising technique
in pointwise probabilistic wind speed exceedance thresholds was devel-
oped by Lin et al. (2020). Here, a track model generating O(1000) syn-
thetic tracks statistically consistent with numerical weather prediction
(NWP) models and time varying environmental predictors is used in con-
junction with an intensity model to predict intensity along each track. In
addition, using a modified version of the physically based model of
Chavas et al. (2015), a two-dimensional surface wind field is generated for
each track member. This ensemble technique provides a detailed probabil-
istic outlook for pointwise winds. Another recently proposed approach to
downscaling uses deep neural networks (DNNs), specifically DNN-based
super-resolution (SR) techniques. In digital image processing, DNN-based
SR (Dong et al., 2014; Yang et al., 2014) describes various algorithms that
take one or more low-resolution images and generate an estimate of a
high-resolution image of the same target (Tian and Ma, 2011), a concept
closely related to downscaling in climate modeling. Another DNN variant,
the generative adversarial network (GAN) (Goodfellow et al., 2014), has
been used to improve feature loss or realism of the super-resolution con-
volutional neural networks (CNNs) (Ledig et al., 2017; Stengel et al.,
2020). SR-GAN was demonstrated to be able to capture the microscale
turbulence characteristics in complex terrain (e.g., mountain and coastal)
by Haupt et al. (2021) and Dettling et al. (2022). Most recently, diffusion
models are being applied to develop SR models for wind downscaling at a
few kilometers (e.g., Merizzi et al., 2024; Kurinchi-Vendhan, 2023).

B. Intensity diagnosis and prediction

As discussed in the beginning of Sec. III, improving TC intensity
prediction remains a top priority and a challenge at operational
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forecast centers worldwide. Moreover, given the lack of in situ observa-
tions over the oceans, using information from satellite data to accu-
rately quantify the storm’s intensity is highly prized. In both diagnosis
and prediction, AI/ML is making beneficial strides. CNNs are particu-
larly well suited for diagnosing intensity from satellite imagery because,
provided sufficient training data, they can decipher relationships
between spatial cloud patterns and storm intensity (Pradhan et al.,
2018; Wimmers et al., 2019; Chen et al., 2019; Lee et al., 2020; Tan
et al., 2022; Gurung et al., 2023, among others). In the prediction of
intensity, a vast spectrum of AI/ML tools have been brought to bear
on the problem, with analog ensembles (Alessandrini et al., 2018;
Lewis et al., 2020), evolutionary programming (Schaffer et al., 2020),
feed-forward (FFNNs) (Cloud et al., 2019); CNNs (Griffin et al., 2022;
Varalakshmi et al., 2023), gradient boosted regression tree models
(Zhu et al., 2022), combined recurrent NN (RNN)/CNN architectures
(Jiang et al., 2022), and a consensus of methods (Chen et al., 2023)
showing promise in deterministic intensity prediction or probabilistic
rapid intensification prediction. It is also likely DWP predictions will
provide competitive or superior intensity predictions before long.

C. Wind structure diagnosis and prediction

Like intensity, accurately determining the horizontal, near-
surface TC wind structure is highly constrained by the lack of in situ
observations over the ocean. Empirical methods using satellite data so
far have offered a propitious path toward inferring TC wind fields.
Although regression techniques have long existed for estimating the
wind field from satellite data, AI/ML techniques have accelerated
improvements in regression. Lu et al. (2022) used support vector
machine methods and general regression NNs. Xu et al. (2022) used
both infrared (IR) and microwave satellite imagery with a CNN to esti-
mate TC size. Zhuo and Tan (2021) found a deep CNN with auxiliary
information about a TC’s environment produces promising estimates
of intensity, size, and structure from satellite data. Tian et al. (2023)
expand upon these ideas and offer a framework for AI/ML-based size
estimation from multiple satellite channels, where multiple AI/ML
steps are applied. IR satellite data are ingested into four layers of two-
dimensional convolutions. Simultaneously, a three-dimensional con-
volution is applied in four layers to multiple satellite channels. Spatial
IR features and channel features are then sent into their own CNNs. In
the final step, a multitask learning model is used to give both intensity
and size estimates for the TC. This step includes additional informa-
tion about the TC’s environment. Baek et al. (2022) similarly found
multitask methods to be successful in TC size estimation. Multistep
methods like this are likely to produce lower errors than existing oper-
ational methods and recent simpler deep-learning approaches.

Outside of the realm of satellite estimates, a variety of AI/ML
techniques have been adapted to estimate TC wind structure with
other input data. To determine wind structure in some given real TCs,
Snaiki and Wu (2019) combined deep learning with idealized Navier–
Stokes equations to base AI/ML estimates of the TC boundary layer
winds upon physical constraints and basic observational estimates of
the state of the storm. Parametric wind structure methods may also be
enhanced in future research using AI/ML (Yan and Zhang, 2022).
Yang et al. (2022) recently developed a decision-tree-based algorithm
to reconstruct detailed TC wind fields using HURDAT2 and ERA-
Interim data. A key purpose of Yang et al. (2022)’s technique is to cap-
ture the azimuthally asymmetric wind structures that can arise from

numerous factors, including storm motion, vertical wind shear, TC
interactions with land, ETT, interactions with convective-generated vor-
ticity anomalies inside the vortex, and other mesoscale-convective inter-
actions. So far, there has been no significant progress in predicting 3D
TC wind fields with AI/ML, but methods used for other TC prediction
problems should be adaptable to wind field prediction. For example, AI/
ML may be used to post-process NWP or DWP output to improve pre-
dictions of TC wind fields. Moreover, given the pace of advancements,
DWP models for direct regional mesoscale simulation will likely evolve
with more reliable 3D wind structures for TCs in the near future.

D. Track prediction

TC track predictions are important in determining when to shut
down wind turbines and they can also provide historical data in which
to conduct model validation. Most of the research using AI/ML in
track prediction falls into the category of observational data fusion
problems (Giffard-Roisin et al., 2020) and/or NWP post-processing.
However, it is possible to create a skillful model simply using the
observational HURDAT2 dataset of TC tracks to train a recurrent neu-
ral network (RNN), specifically an LSTM version to contend with a so-
called “vanishing gradient problem” (Bose et al., 2022). Most track pre-
diction methods benefit from fusing multiple sources of observational
and predictive data to generate a satisfactory track forecast. Hybrid
neural network techniques to deal with multiple types of input data
offer a potentially optimal path for TC applications including track
prediction. For example, Cheung et al. (2022) used a CNN to extract
spatial patterns in Global Ensemble Forecast System (GEFS) output, a
FFNN for GEFS-predicted TC positions, and an LSTM RNN to cap-
ture information from previous time steps. This post-processing tech-
nique improves upon the skill of the GEFS track forecasts. Kumar
et al. (2023) also found success in extended lead-time track prediction
combining AI/ML methods. Other recent work in the area of track
prediction includes the use of an RNN (Kordmahalleh et al., 2016; Gao
et al., 2018; Alemany et al., 2019), a genetic NN (Huang and Jin, 2013),
and empirical ensemble methods (Dong and Zhang, 2016). Recently,
researchers, many of whom work in private industry, have rapidly
advanced Data-drivenWeather Prediction (DWP) models using global
reanalysis datasets (Pathak et al., 2022; Chen et al., 2023; Lam et al.,
2023; and Nguyen et al., 2023). Many of these types of AI/ML models
successfully produce extended range global weather predictions and
even include the ability to produce excellent TC track predictions
(Bi et al., 2023).

E. Wave prediction

Extreme waves generated by tropical and extratropical storms
pose a significant hazard to offshore wind energy infrastructure.
Prediction models often depend on the wind fields diagnosed or pre-
dicted in applications alluded to above. Ocean waves are often simu-
lated in physical models, but AI/ML is increasingly being incorporated
into the general problem of determining significant wave heights. In
the last 5 years, in fact, AI/ML-based studies have proliferated on this
specific topic. For example, Minuzzi and Farina (2023) used a long
short-term memory (LSTM) with ERA5 reanalysis and buoy data to
forecast significant wave height. Song et al. (2022) combined both a
CNN and LSTM and applied the methods to ERA5 reanalysis data to
target physical model-simulated waves. Domala et al. (2022) more
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comprehensively discussed empirical methods for significant wave
height prediction. These studies are often directed toward more typical
sea states rather than the violent conditions imposed by extreme
storms. Some AI/ML-based work has been conducted for TC-induced
waves (Mafi and Amirinia, 2017; Chen, 2019; Meng et al., 2021; Wei,
2021; and Bethel et al., 2022) and other AI/ML tools have been used to
understand offshore platform integrity in the midst of significant oce-
anic waves (Dyer et al., 2021). Overall, more study is needed for the
more extreme TC winds that create a very complex sea state, both at a
basic research level and in AI/ML applications.

V. CLIMATE CHANGE IMPACTS ON TC AND ETC

Prior to the 19th century, aspects of TC activity have been
inferred from paleotempestology (Rodysill et al., 2020; Altman et al.,
2021; Mann et al., 2009; Toomey et al., 2013). From the 19th century
to present, changes in TC activity are assessed using the best-track
dataset, which relies on observations available at the time. Because TC
observations greatly improved with the deployment of geostationary
satellites in the 1970s, and satellites improved thereafter, a more reli-
able observational record extends from around 1980 to the present.
Many historical studies have thus focused on this period. Chand et al.
(2022), Klotzbach et al. (2022), and Emanuel (2021) noted an increas-
ing number of storms in the North Atlantic using different methods.
However, there has been no statistically significant change in the num-
ber of landfalling TCs (Vecchi et al., 2021). From 1980 to 2020, there
has been an increase in mean TC intensity (Kossin et al., 2020;
Emanuel, 2020; Elsner, 2020). There is also evidence of slower mean
translation speed (Kossin, 2018), heavier precipitation (Touma et al.,
2019), and slower inland decay rates (Li and Chakraborty, 2020).
Bhatia et al. (2019) found that TC intensification rates have increased
in the North Atlantic.

To understand future changes in TC intensity and frequency
under a changing climate, GCMs and ESMs are often used. In these
models, the intensity and frequencies of TCs are very sensitive to hori-
zontal grid spacing, because resolving the inner core is necessary to
capture processes responsible for intensity variability, as already been
discussed in Sec. III. Discrepancies among different climate model
integrations also result from different forcings, feedback from aerosols,
and clouds, among other factors. Most climate modeling studies show
a global decrease in the number of TCs (Knutson et al., 2020) in future
climates under a projected 2 �C warming (median decrease in 14%),
although a few studies show an increase (Emanuel, 2021). Projected
TC frequencies in different basins are more variable. Additionally,
most studies show frequency reductions in the Southern Hemisphere
(Roberts et al., 2020) while the Northern Hemisphere is more uncer-
tain. Theory and climate modeling studies show that, globally, the
strongest TCs are likely to get stronger in future climates, thereby
increasing the fraction of intense TCs to total TCs (Knutson et al.,
2020), consistent with findings based on observational records (Kossin
et al., 2020). Notably, this trend is also evident in the North Atlantic
basin (Chauvin et al., 2020). One important, yet more unpredictable
factor impacting TC activity on climate and seasonal timescales is
Saharan-born dust. Strong et al. (2018) and Reed et al. (2019) found
that increases in Saharan dust aerosols decrease TC activity in the
North Atlantic basin.

Using the CMIP6 ESM output, Balaguru et al. (2023) noted that
the Coastal Hurricane Frequency will increase over the Gulf Coast and
lower East Coast with a maximum over the northern Gulf Coast and

Florida. This was attributed to the strengthening of upper tropospheric
circulation above the western Atlantic. The study (Balaguru et al.,
2023) also highlights the sensitivity of projected large-scale winds to
tropical heating and precipitation changes, which are driven by the
spatial pattern of future SST warming. The inter-model uncertainty of
projected heating trends is constrained by the response of the equato-
rial Pacific zonal SST gradient to climate change. Liu (2014) developed
a hurricane simulation program based on Vickery et al. (2000) to
assess the impacts of two climate change effects (change in annual
storm frequency and sea surface temperature) on future U.S. design
wind speeds for the coastal regions and projects potential hurricane
losses under different speculated future climate scenarios. Results show
potential increases of losses of buidlings in the Gulf Coast of up to 46%
by the end of the century, highlighting the significant increase in hurri-
cane risk for coastal regions due to climate change. Emanuel (2021)
applied a downscaling technique described in Emanuel et al. (2006,
2008) to study the impact of anthropogenic climate change using
CMIP6 models. The study found an increase in probability of rapid
intensification. The study also found an increase in storms stalling,
which can cause extensive damage due to rainfall and winds.

Given the future projections of TC changes from various Earth
Systemmodels, NOAA released a fact sheet in 2023 quantifying expected
impacts of climate change on hurricanes by the end of the 21st century
in the North Atlantic basin (NOAA, 2023). A 2 �C increase in global
mean temperature is expected to result in the following: storm inunda-
tion rise of 2–3 ft, rainfall rate increase in 15%, 10% increase in Category
4–5 hurricanes, 15% decrease in total storms, and projected increase in
3% in the strongest winds. Although studies have identified trends in the
North Atlantic basin as a whole, there is less certainty about changes
in activity in local parts of the basin, such as the continental shelf off the
U.S. East Coast, where OWTsmay be deployed.

Future projections of ETT of TCs are more complicated, because
they are affected by both changes in TCs (e.g., frequency, intensity,
and size) and changes in the midlatitude environment. Several previ-
ous studies suggest that warmer SSTs and reduced wind shear in the
North Atlantic tropics and subtropics create a more favorable environ-
ment for TC survival. This will allow them to reach baroclinic zones
more often in the future, resulting in an increase in the percentage of
ETT events (Liu, 2014; Michaelis and Lackmann, 2019; and Michaelis
and Lackmann, 2021). Haarsma et al. (2013) and Baatsen et al. (2015)
showed similar results in their future climate simulations: a projected
increase in TC intensity along with a poleward shift in TC genesis
region. Studies that examined storm-scale ETT changes in response to
climate change have observed lower minimum sea-level pressure
(SLP) and stronger maximum sustained winds, along with significant
increases in precipitation during the ETT and post-ETT phases of
tropical storms in Representative Concentration Pathway 8.5 scenario
by 2100 (Michaelis and Lackmann, 2019; Michaelis and Lackmann,
2021; Jung and Lackmann, 2019; Jung and Lackmann, 2021, and Jung
and Lackmann, 2023). These studies portend an increased risk of
coastal flooding and storm surges, including in higher latitudes such as
the northeastern United States.

Finally, Kiran and Balaji (2022) used the COAWST framework
and considered atmosphere and ocean coupling to study climate
change impacts on two severe TCs in the Bay of Bengal. They use
pseudo-global warming (PGW) methodology to project the cyclones
to future (i.e., 2075) climatic conditions for RCP 4.5 and 8.5 scenarios.
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They find that (1) compared to the current conditions, the maximum
sustainable wind speed increases by 7.2 km h�1 for both cyclones for
the RCP 8.5 scenario in 2075; (2) accumulated cyclone energy, power
dissipation index, and precipitation were also projected to increase in
future climatic conditions; (3) cyclones will intensify more in the future
due to the combined effect of increased upper ocean heat content and
reduced translation speed. However, this study (Kiran and Balaji,
2022) ignored the impacts of waves on the atmosphere and ocean
component, which are important to realistically capture the TC
intensity.

VI. RISK ASSESSMENT

OWT risk assessment is a critical aspect of the resilience and
durability of OWT infrastructure (Staid et al., 2015). Advanced com-
putational models are used to simulate the complex interactions
between hurricanes and OWTs, enabling engineers to evaluate the
structural response, dynamic behavior, and potential failure modes
under extreme wind and wave conditions (Kapoor et al., 2020). In the
current IEC 61400-3 (Knutson et al., 2007) metocean design basis,
50-year extreme joint wind/wave conditions for ultimate loads and
500-year conditions for robustness checks are required. To date, most
offshore wind has been established in the North Sea and other western
European water bodies, which are mostly at risk from ETCs/European
windstorms (Buchana and McSharry, 2019). The difficulty for the U.S.
Atlantic and Gulf coasts, and to a lesser extent southern California, is
that we move into a mixed climate featuring TCs, which are not pre-
sent in western Europe. Research has shown that this mixed climate
needs to be treated carefully, with separate extreme value distributions
between TCs and ETCs (O’Grady et al., 2022). At the 50-year level,
depending on location, we could be close to the intersection of these
extreme value distributions, meaning that either TCs or ETCs could be
driving the ultimate design loads. On the other hand, the 500-year
event for robustness check is certainly associated with a TC risk. In
addition, the analysis needs to consider loads from a variety of factors
including wind speeds (with turbulence intensities), wave heights and
other hydrodynamic loads, rainfall, lightning, and their joint probabili-
ties. The impact of climate change on tracks and intensities of TCs and
other storms (see Sec. V) also need to be considered over and beyond
the lifetime of the wind farm. The following subsections highlight risks
to OWTs from ETCs and TCs.

A. ETC-driven wind and wave risks

ETCs are common offshore of the mid-Atlantic and northeast
U.S. coastlines during the cool fall and winter seasons (Colle et al.,
2013), with similar occurrence frequencies to the North Sea and other
western Europe water bodies (Ulbrich et al., 2009). However, the
strongest 5% of ETCs are more common in the northeastern U.S. and
Gulf of Maine regions (5–10 cyclone days per cool season) than most
of western Europe (1–5 cyclone days per cool season) (Ulbrich et al.,
2009). In the most extreme cases, near-surface wind speeds for ETCs
can approach those of Category 1 hurricanes (Letson et al., 2021;
Pringle et al., 2021). An analysis using ERA5 reanalysis for ETC-
driven wind and wave risks offshore of the mid-Atlantic and north-
eastern U.S. coasts estimates that the 50-year event will have 30–40 m
s�1 wind speeds at 100 m above sea level, and significant wave heights
more than 15 m (Barthelmie et al., 2021). Analysis in the North Sea
shows that towers may buckle due to extreme extratropical

windstorms, although there are relatively low annual probabilities, par-
ticularly for yawing turbines (Buchana and McSharry, 2019). Over a
20-year period at the Horns Rev II wind farm (91 turbines total), it
was estimated by Buchana and McSharry (2019) that the 1% exceed-
ance probability for buckling is 10 towers, with �95% probability of
no tower buckling occurring over that time period. Average annual
losses for all North Sea wind farms are estimated at �2M euros, and
European union solvency requirements could require insurers hold
49M euros for payouts (computed from the 200-year event).

B. TC-driven wind and wave risks

Hurricanes generate extreme winds that may far exceed those of
ETCs and current design standards, causing excessive damage to
OWTs along Atlantic and Gulf coastal waters of the United States.
Rose et al. (2012) were the first high-profile example to assess this risk
based on historical hurricane statistics at selected locations. They
found that hurricanes exceeding design limits caused buckling failures,
with over half of the towers of a 50-turbine wind farm buckling during
a Category 3–5 hurricane. In a Galveston, Texas, offshore wind farm,
32% of the towers would be expected to buckle over a 20-year period.
Backup yaw power and the ability to yaw quickly with rapidly chang-
ing wind directions in hurricanes was identified as an important factor
for reducing damage.

However, the limited historical record is generally considered
inadequate for determining accurate statistics of Atlantic TCs, because
it is relatively rare for them to pass over or near a particular offshore
wind farm. To solve this problem, Emanuel et al. (2006) first developed
a synthetic downscaling method for TCs that can be used to generate
databases of events spanning 10000–100000 years or more, in order
to better estimate return periods compared to the �50 years of quality
historical data since the satellite era. As described in Emanuel (2006),
the method involves randomly drawing hurricane origins points from
a genesis probability model (e.g., Poisson or negative binomial distri-
bution of location-specific statistics), moving the hurricane according
to environmental flows with a correction for beta drift (or using
location-specific statistics of forward speed and direction), and apply-
ing an intensity model based on environmental variables such as the
SST, atmospheric pressure, atmospheric temperature, ocean mixed-
layer depth, and thermal stratification of the ocean below the mixed
layer. Nowadays, several of these databases are available in the research
community (Hallowell et al., 2018; Lee et al., 2018; Bloemendaal et al.,
2020; Bloemendaal et al., 2022; and Balaguru et al., 2023).

A notable study using such a synthetic TC database for hurricane
risk assessment of OWT in the Atlantic basin came from Hallowell
et al. (2018). Based on 100 000 years’ worth of hurricane-induced wind
and waves, they estimate that the mean lifetime (20-year) probability
of structural failure for a tower or monopile of OWTs in U.S. Atlantic
coast wind farms range between 7.3� 10�10 and 3.4� 10�4 for a func-
tional yaw control system, and between 1.5� 10�7 and 1.6� 10�3 for
a nonfunctional yaw control system. These estimates of failure are far
lower than those of Rose et al. (2012). As an example, Hallowell et al.
(2018) estimated an expected failure of 0.01 turbines for a 1223 OWT
wind farm in New Jersey over a 20-year lifetime, while Rose et al.
(2012) estimated that about 1 turbine would fail in a 50 OWT New
Jersey wind farm; this is about three orders of magnitude different.
Both studies use the NREL 5MW offshore baseline turbine. Getting to
the bottom of this large discrepancy would seem to be a high priority.
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A key question is whether this discrepancy arises mostly from differ-
ences to damage fragility curves or from the hazard description. To
give one hypothesis, Rose et al. (2012) potentially overestimated the
wind speeds for the OWTs by only using the maximum wind speed,
while Hallowell et al. (2018) used parametric hurricane models to
describe the spatiotemporal variations of wind and wave fields for each
synthetic TC event.

Recently, Balaguru et al. (2020, 2023) developed a RAFT using
statistical and AI/ML approaches to generate synthetic hurricanes and
provided insights to understand coastal hurricane risks as a result of
climate change. Kim and Manuel (2016) formulated a framework for
intensity evolution of TCs and utilized it to simulate wind patterns
around wind farms. Their research assesses the risks posed to wind
turbines by examining both the load distribution experienced and the
probability distribution of wind speeds exceeding certain thresholds
for each individual turbine.

C. Other hazards induced by TC and ETC and their
impacts on OWTs

Although the duration of a TC or ETC event is much shorter
than the lifespan of an OWT, OWTs can be vulnerable to certain haz-
ards induced by these transient, yet extreme weather events. Reports
indicate that a single catastrophic event can lead to severe damage to
the structure and performance of OWTs, as reviewed below.

1. Rainfall

Siddons et al. (2015), Mishnaevsky et al. (2021), and Pryor et al.
(2022), and others noted that leading-edge erosion (LEE) of wind tur-
bine blades is a critical issue caused by raindrops, hailstones, and other
particles. LEE not only reduces aerodynamic efficiency, but also accel-
erates premature failure, both of which impact the generation of power
and lead to a reduction in annual turbine energy production. In recent
years, specialized coatings and leading-edge tapes have been developed
to act as sacrificial surfaces. As the size and blade diameter of wind tur-
bines increase, the speed of the blade tips rises significantly. As a result,
the impact of raindrops, hail, and other particles on the lifespan of
these turbine blades has become more pronounced. Herring et al.
(2020) analyzed measurements of offshore precipitation for a year
using a disdrometer that was positioned 5.56 km offshore from the
coast of Blyth, Northumberland. The dataset was compared to the
most widely used droplet size distribution (Best, 1950), which often is
used to represent onshore precipitation. Herring et al. (2020) found
that this widely used distribution did not fit the offshore data and that
any lifetime predictions made using this distribution are likely to be
inaccurate. Such a shortcoming may result in a significant underesti-
mation of the severity of the offshore conditions that cause LEE. Thus,
improvements in the hydrometeor drop size distributions in marine
TCs and ETCs are needed to accurately quantify hydrometeor impacts
on turbine blades.

2. Lightning

Currently, operational and planned offshore wind plants are vul-
nerable to lightning strikes, as lightning tends to be more intense over
the ocean than land, likely because the conductivity of the saline water
is higher compared to moist soil (Asfur et al., 2020). Turbine heights

are increasing, adding to the risk of lightning strikes. Lightning strikes
can cause severe damage to OWTs, especially to the blades (Garolera
et al., 2016; Hsu et al., 2018). Tao et al. (2018) performed transient
analysis using a complete circuit model for OWTs during lightning
strikes to multiple blades. They found that the transient potential rise
on OWTs and induced over-voltages at cable terminals could harm
the facilities and equipment of the OWTs. Hence, more research needs
to be conducted to combat lightning strikes for OWTs. Using 9 years
of observation detection, Holzworth et al. (2019) found there are
superbolts happening mostly over the water going right up to the coast.
Superbolts are extremely rare, about a thousandth of a percent, and are
most common in the Mediterranean Sea, in the northeast Atlantic
Ocean, and over the Andes Mountains. There were just a few detected
over the East Coast of the United States from 2010 to 2018, indicating
the superbolt might be less of a concern compared to regular lightning
strikes.

3. Tornadoes

The formation of TC-induced tornadoes is well documented in
Edwards and Mosier (2022). There have been several reports of torna-
does damaging wind turbines, including breaking one or more blades
(https://www.weather.gov/ind/). Lopez Ortiz (2023) simulated a tor-
nado impacting a wind turbine and conducted sensitivity experiments
with varying turbine locations, orientations, and operational condi-
tions that may lead to structural failures or reduced loads. The study
found that changing the yaw angle of the rotor plane and blade direc-
tion could reduce the load. These studies and findings are helpful for
understanding the potential damage of tornadoes to OWTs.
Waterspouts have the same characteristics as land tornadoes, and are
associated with severe thunderstorms. They are often accompanied by
high winds and waves, large hail, and frequent dangerous lightning.

4. Storm surge

Storm surges driven by TCs and ETCs could become important
for offshore wind energy for those turbines located in relatively shallow
depths, especially on wide continental shelves where surge is amplified
(Resio and Westerink, 2008). In particular, strong currents near the
seabed associated with storm surge and waves may cause scouring
around the turbine foundations and buried submarine cables that
transport power onshore (Gao et al., 2024). There is also the danger of
storm surge causing inundation of the substations located onshore or
nearshore. Since substations are the most critical components of an
offshore wind farm the inundation risk is important to consider.

VII. SCIENTIFIC GAPS AND RESEARCH NEEDS

After surveying the current landscape of observational capabili-
ties, Earth system models, weather and regional-scale models, micro-
scale models, and ML-based data-driven models focused on their
applications in TC/ETC events relevant to offshore wind energy, we
have established a foundation for understanding the strengths and
potentials of these approaches. We explored the impacts of climate
change on TCs and ETCs, as well as the associated risks posed by these
phenomena. The primary goal of our review is to provide comprehen-
sive information that enhances risk assessment practices and wind tur-
bine resilience against TC and ETC threats. Despite considerable
progress in these areas, there is still a substantial need for further
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technological development to accurately measure and simulate the
extreme weather conditions caused by TCs and ETCs—such as high
winds, significant wave heights, rapid wind direction changes, and
intense turbulence. In light of this, the following sections outline the
scientific gaps and future research needs identified from our thorough
review of state-of-the-art methodologies. We propose a set of research
priorities and directions for the community to collaboratively explore.
These insights aim to not only spur further investigation but also serve
as a foundation for refining wind turbine design and IEC design stand-
ards, thereby advancing our ability to mitigate risks associated with
severe weather events.

A. Observations and validation

Although not all aspects of the TC are adequately sampled, cer-
tain parts have been observed better than others. Visible and infrared
satellites sensors can observe the upper-level evolution of the cirrus
cloud canopy; historically, the intensity of TC has been correlated with
these patterns (i.e., the Dvorak technique). Microwave sensors on polar
orbiting satellites have been used to map spatial patterns of ice particles
and warm rain associated with the TC eyewall and spiral rain bands.
Away from the dense cirrus canopy, atmospheric motion vectors
(which track clouds and water vapor in successive satellite images)
have been used to map the vertical structure of the winds near the TC.
Some TCs have been reasonably well sampled at flight level during air-
craft reconnaissance missions (3000 m above sea level). However, they
are rarely thoroughly sampled in the boundary layer and near the sur-
face, which is the primary area of interest for OWTs. Remote measure-
ments such as Stepped-Frequency Microwave Radiometer, SAR, and
Doppler radars help fill some of the gaps in this region, but more
in situ observations are sorely needed. Due to extreme winds, crewed
aircrafts typically cannot enter these regions; therefore, sampling must
be done by UASs or remotely by satellites (e.g., SAR). Near-surface tur-
bulence and characteristics of the air–sea interface have generally not
been very well observed, particularly in intense TCs, although new
platforms such as saildrones, balloons, and UASs show tremendous
promise in obtaining larger quantities of valuable data in this region.
Finally, data sharing between public and private sectors is important
for enhancing collaboration and better informing decision-making in
terms of risk resilience (Wang et al., 2024).

B. Numerical and AI/ML-based modeling

1. Earth system modeling

Including wave processes in ESMs presents significant computa-
tional and scientific challenges, from the high resolution required to
accurately simulate these interactions to the evolving understanding of
waves’ impacts on the climate system. Advances in computing power
and modeling techniques, however, are gradually enabling the integra-
tion of these complex processes, enhancing the models’ accuracy and
predictive capabilities. For example, FIO-ESM v2.0 employed a wave
model that includes the effect of surface wave Stokes drifts on air–sea
momentum and heat fluxes as well as the effect of wave-induced sea
spray on air–sea heat fluxes (Bao et al., 2020). The U.S. Department of
Energy’s (DOE’s) E3SM Project team has coupled WW3 into E3SM
(Ikuyajolu et al., 2023; Brus et al., 2021). The coupling alters the atmo-
spheric wind stress based on the Janssen’s (1991) modified Charnock
parameter (Charnock, 1955) that takes into account the wave stresses.

On the ocean side, momentum fluxes are calculated by subtracting the
total wave stress from the atmosphere momentum flux to account for
a sea state not in equilibrium with the winds due to the growth and
dissipation of the wave field (Ikuyajolu et al., 2024). Studies are being
conducted to evaluate the impacts of the wave coupling on climate at
seasonal and subseasonal variabilities such as those that accompany
the MJO (Ikuyajolu et al., 2024). More comprehensive model valida-
tions are needed to understand the impacts of wave coupling on TC
and ETC characteristics. Whereas many different modeling centers
currently issue subseasonal and seasonal forecasts, the skill of these
forecasts depends on the skill of simulating the MJO, QBWO, RWB,
and ENSO as they are the dominant drivers of global TCs and ETCs
(Sec. III A). The MJO has been simulated better in recent years with
improvements to numerical weather prediction models (Vitart et al.,
2017). Overall, the ESMs do not exhibit skill beyond a seasonally vary-
ing climatology. To further improve the model performance, more
efforts are needed for better representing the physical processes such
as the interactions between the atmosphere, waves, and ocean.
Additionally, improvements in spatial resolution, including the use of
regional refined mesh (RRM) as seen in the E3SM, are essential.
Studies have consistently indicated that a minimum spatial resolution
of �25 km is required to capture the climatology of TC intensities,
though it is still not sufficient to simulate major hurricanes of Category
3 and above. Thus, convection-permitting scale is crucial for ESMs to
capture not only the large-scale seasonal and subseasonal variabilities
but also the regional-scale characteristics of extreme weather events,
including TC and ETCs on a sub-daily basis. Enhancements in the
Simple Convection-Permitting E3SM Atmosphere Model (SCREAM)
have been enabled by leveraging heterogeneous architectures found in
DOE leadership computing facilities, along with the increasing com-
puting power of general-purpose graphics processing units (GPUs). By
integrating the simulation of oceans and waves with other critical com-
ponents of the Earth’s system into SCREAM across both climatic and
weather time scales, the model’s ability to accurately simulate extreme
weather events will be significantly improved, which is crucial for
addressing the challenges we face in predicting and understanding
extreme weather impacts on wind energy.

2. Regional-scale modeling

At regional scales, developing the coupling between the atmo-
sphere and ocean requires comprehensive knowledge about the ocean
model. For example, establishing the correct open ocean boundary
conditions is crucial yet challenging. These conditions significantly
impact the simulation results, as they must accurately enable the
exchange of heat, moisture, and momentum, and information between
the model domain and the surrounding larger-scale environment.
Furthermore, although interactions between the atmosphere, ocean,
and waves have been considered in a limited number of models, the
effects, especially from non-breaking waves, are not fully captured. For
instance, phenomena such as non-breaking-wave-induced mixing and
breaking-wave-induced sea spray are either overlooked or not well
considered in most widely used fully coupled models (see the
Appendix). Similarly, the concept of wave-induced surface roughness
remains not fully understood, with various formulas available to
parameterize it. However, these formulas yield different performances
under various TC conditions.
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The spatial resolution impacts from atmosphere, ocean, and wave
models are significant as reviewed in Secs. IIIA and IIIB. The use of
an unstructured grid, which provides ideal geometric fitting and flexi-
bility for local topography refinement, has quickly gained popularity in
research and applications to estuaries, coastal oceans, and the Great
Lakes. This model framework allows for a high-resolution mesh over
regions of interest, such as offshore wind plants, offering improved
simulations of wind, wave, and current conditions. These enhance-
ments are particularly necessary for mesoscale-to-microscale coupling,
as reviewed in Sec. III C. However, most fully coupled regional or
mesoscale models employ a regular grid for the ocean model, which
does not allow regional refinement over regions of interest.

Achieving this additional high resolution over a region of interest
poses a challenge, as it requires much shorter time steps, significantly
increasing computational demands. GPU-accelerated version of these
numerical models is desirable to simulate sufficient hurricane events
for estimating risks, such as N-year return levels, at wind farms.
Notably, no studies have employed fully coupled models in real hurri-
canes to assess their impacts on wind turbine design standards, includ-
ing wind shear and veer, and to compare these against state-of-the-art
observations, including dropsondes and sail drones. Finally, to study
the impacts of global warming on TCs and ETCs, unlike the
atmosphere-only model where only the PGW signal is needed for the
atmospheric profiles, fully coupled atmosphere-ocean-wave models
must also consider the PGW signal in the ocean component.
Additionally, it is necessary to evaluate whether the PGW should
account for only the thermodynamic changes (e.g., air temperature;
Marciano et al., 2015) or both dynamic and thermodynamic changes
(e.g., air temperature, winds, and geopotential; Liu et al., 2017), consid-
ering that winds are a crucial input for the wave models.

3. Microscale modeling andmesoscale-to-microscale
downscaling

Although the simple method proposed by Bryan et al. (2017) is
useful for downscaling the hurricane winds at a turbine scale, a major
limitation of this method is that it assumes a laterally periodic domain,
the simulation must be far enough from the storm center (20 km or
so) so that radial gradients in the flow are small enough that the flow
appears horizontally homogeneous across the LES domain.
Furthermore, near the eye and eyewall, there is significant mean verti-
cal motion of the flow, which cannot be captured by this method.
Another limitation is that Bryan et al. (2017) presents this method
such that the source terms do not vary with time. The equations for
the source terms can also be made time varying to allow the domain to
capture the effect of the translating storm. One can imagine this being
of great value if simulating a day long wind farm simulation with actu-
ator disks as the hurricane passes by the farm.

At the other end of the simplicity spectrum, we envision a
domain with mixed inflow/outflow boundaries on all sides (except the
bottom). The microscale lateral and upper domain boundaries can be
provided by the mesoscale hurricane simulations on surfaces, such as
velocity, temperature, and possibly moisture and turbulent kinetic
energy. Additionally, the microscale domain lower boundary can be
provided by mesoscale simulated heat flux, momentum flux, and sea
surface temperature. These data are extracted at a certain frequency
lower than the microscale time step, possibly as low as every 30min.
Additionally, some measure of the mesoscale background driving

pressure gradient along a vertical column through the microscale
domain is required. The data are interpolated in time and space to the
resolution of the microscale simulation. The extracted background
driving pressure gradient is applied as a time-height varying source
term.

Last but not least, there appears to be potential in finding ways to
drive hurricane microscale simulations not only with mesoscale simu-
lations, but also with real field data. As the types of field data available
increase over time (e.g., now we not only have dropsondes, but piloted
gliders dropped from manned aircraft), and the quality of those data
becomes better while computing power increases with the advent of
exascale computing, the potential to fuse real and simulated data is
exciting. In addition, the work about microscale hurricane modeling
(described in Sec. III C) focuses on the atmosphere, but there is a need
to better integrate wave/current effects into hurricane microscale simu-
lations. We see this as a major area of research that holds potential to
produce more realistic simulations. When considering wind energy, it
is critical to faithfully capture not only the atmosphere and its turbu-
lence, but also the waves and current, to understand loads on OWTs
subject to hurricanes.

4. AI/ML-based modeling

Empirical dynamical methods have been successful in the frame-
works of TC and weather prediction. In these approaches, physical
principles are sagaciously integrated with statistical methods. Similarly,
AI/ML methods often lack the beneficial integration of physical con-
straints that can help guide a method to successful solutions in
research and prediction. Integrating physical constraints into AI/ML
tools will benefit track, intensity, structure, wave, boundary layer
modeling, and many other important applications in TC research and
prediction. In the context of offshore wind turbines impacted by TCs,
AI/ML advancements specifically in emulating LES simulations or
high-resolution observations of TC boundary layers are needed in the
near future. These efforts may be advanced through pure DWP meth-
ods or through downscaling from NWP predictions or reanalysis data.
For all AI/ML applications, it is important to point out that the perfor-
mance potential of AI/ML applications is far too often restricted by
limited training data. In the age of AI/ML, calibrated and frequently
updated datasets of both observational reanalysis data and NWP
model output (e.g., several years of reforecasts from a TC NWP model
using a frozen model configuration) should be curated or facilitated by
funding agencies to allow AI/ML to reach its highest potential. In addi-
tion, operational AI/ML techniques must be flexible so that they can
be readily tuned to new data or updated NWP model configurations.
Too frequently, there are inadequate resources in operational centers
to upgrade existing AI/ML methods once operational implementation
is completed. Last, AI/ML techniques are frequently used as black box
tools and the understanding of the physical reasons for certain predic-
tions is often opaque. Physically interpretable AI/ML techniques need
to become more of a standard practice to improve scientific and pre-
dictive insight.

C. Risk assessment and climate change

Currently, the offshore wind energy industry bases its return level
estimates solely on historical data. For instance, synthetic hurricanes
spanning tens and hundreds of thousands of years are generated using
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TABLE I. Formulas for wave-induced roughness (z0), where u� is the friction velocity, HS is the significant wave height, Lp is wavelength at the peak of the wave spectrum, cp
is the wave phase speed at the peak of the spectrum, and h is difference of the wind direction and the peak wave direction (in radians).

References Formula Wave parameters

Taylor and Yelland (2001)
Z0=Hs ¼ 1200 � Hs

Lp

� �4:5

Wave steepness
Hs is significant wave height, Lp is peak wavelength

Drennan et al. (2003; 2005)
Z0=Hs ¼ 3:35 � u�

cp

� �3:4

Wave age
u� is the friction velocity, cp is the wave phase speed at the peak of the spectrum

Oost et al. (2002) Z0=Hs ¼ 25
p

� �
� Lp

Hs

� �
� u�

cp

� �4:5

Wave age, and wave steepness

Porchetta et al. (2019; 2021)

Z0=Hs ¼ 20 � cos 0:45hð Þ � u�
cp

� �3:8�cosð�0:32hÞ

Wave age, and wave direction
h is the difference of the wind direction and the peak wave

direction (in radians)

TABLE II. Three well-validated, fully coupled ocean–atmosphere–wave models: COAWST, FIO-AOW, and UU-CM.

COAWST (Warner et al., 2010) FIO-AOW (Zhao et al., 2017) UU-CM (Wu et al., 2019)

Institute Woods Hole Coastal and Marine
Science Center, U.S. Geological

Survey

FIO, Ministry of Natural
Resources of China

The Uppsala University

Atmosphere model WRF WRF WRF
Ocean model ROMS POM NEMO
Wave model SWAN MASNUM WW3
Coupler MCT C-Coupler v1 OASIS3-MCT
Variables exchanged
between the atmosphere
and ocean

WRF to ROMS: near-surface
winds, relative humidity and air
temperature, atmospheric pres-
sure, cloud fraction, precipita-
tion, shortwave and longwave

net heat fluxes

WRF to POM: latent and sensi-
ble heat flux, friction velocity, sea
spray latent and sensible heat
flux, shortwave and longwave

radiation flux

WRF to NEMO: atmospheric
wind stress, downwelling and

upward shortwave and longwave
radiation, net water flux

ROMS to WRF: SST ROMS to WRF: SST NEMO to WRF: surface current
velocity, SST

Variables exchanged
between the atmosphere
and wave

WRF to SWAN: near-surface
winds

WRF to MASNUM: near-surface
winds

WRF to WW3: near-surface
winds.

SWAN to WRF: significant wave
height, and wavelength

MASNUM to WRF: significant
wave height

WW3 to WRF: Charnock coeffi-
cient (Charnock, 1955)

Variables exchanged
between the ocean and
wave

ROMS to SWAN: surface cur-
rents, free surface elevation, and

bathymetry

POM to MASNUM: sea surface
current

NEMO to WW3: surface current
velocity, water level

SWAN to ROMS: significant
wave height, wavelength, wave
direction, surface and bottom
periods, percent wave breaking,
wave energy dissipation, and bot-

tom orbital velocity

MASNUM to POM: Non-
breaking wave-induced vertical

mixing coefficient

WW3 to NEMO: surface Stokes
drift, significant wave height,
mean wave period, wave-

supported stress, momentum
flux from waves to currents, TKE

flux from waves to currents
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historical observations and reanalysis data (Emanuel et al., 2008;
Hallowell et al., 2018). However, studies incorporating both observa-
tions and model simulations have shown that climate change can alter
the characteristics of these extreme phenomena, such as the frequency
and intensity of hurricanes, as summarized in Sec. V. This implies that
the parameters derived from extreme value theory might differ when
future climate data are considered and may in fact be non-stationary
throughout the lifecycle of an offshore wind farm. Of greater concern
is the insurance industry’s practice of using onshore locations as prox-
ies in their statistical loss models for offshore claims (Wang et al.,
2024). Therefore, the return levels for certain locations should be re-
estimated, incorporating additional information from future climate
projections provided by climate models. On the other hand, efforts are
needed to develop and maintain quality climate datasets with uncer-
tainty estimates. Although confidence on future TC activity on global,
and to a lesser extent, basin scales is higher, regional activity is less well
understood. In particular, characteristics of future TCs and ETCs over
U.S. offshore wind lease areas are not as well understood. Improved
representation of physical processes in climate models and better
observations are needed as discussed earlier (Secs. VIIA and VIIB) for
enhancing future projections and reducing uncertainties associated
with both local and large-scale circulations, as well as SST warming
patterns.

In addition, other hurricane-induced hazards could damage the
OWTs, although they are not as severe as strong winds and high waves
(as described in Sec. VIC). These hazards are not fully understood in
the current capacity of modeling and observational studies. These
include rainfall drop size distributions, lightning, and other small-scale
phenomena such as tornadoes. Studies on rainfall drop size distribu-
tions are very limited in time and space. Existing datasets might not
cover a wide range of turbine locations and environmental conditions,
leading to uncertainties in the assessment of rainfall impacts. The pre-
cise mechanisms that trigger lightning within hurricanes are not yet
fully understood (Asfur et al., 2020). Accurate representation of
updrafts and downdrafts is essential for simulating the vertical trans-
port of charge and the development of lightning. Resolving these pro-
cesses at the appropriate spatial and temporal scales remains a
challenge. The prediction of tornadoes (including waterspouts) is a
classic example of scale interaction. It involves large-scale, storm-scale
and tornado-scale environments. Modeling these scale interactions is
challenging due to limitations in model resolution, understanding of

treatment of moist convection, and boundary layer processes among
others. Statistical or AI/ML models applied to mesoscale models may
offer some hope in improving tornado prediction without needing to
do LES to explicitly simulate tornadoes.
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APPENDIX: FORMULAS FOR WAVE-INDUCED
ROUGHNESS CALCULATION AND THREE FULLY
COUPLED ATMOSPHERE-OCEAN-WAVE MODELS

Table I shows formulas for wave-induced roughness (Z0),
where u� is the friction velocity, Hs is the significant wave height, Lp
is wavelength at the peak of the wave spectrum, cp is the wave phase
speed at the peak of the spectrum, and h is difference of the wind
direction and the peak wave direction (in radians). Table II shows
three well-validated, fully coupled ocean-atmosphere–wave models:
COAWST, FIO-AOW, and UU-CM.
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