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Abstract The Maritime Continent (MC) plays a vitally important role in the Earth's climate system from
both oceanic and atmospheric perspectives. While the critical role of ocean‐atmosphere coupled dynamics
over the MC has long been recognized, development of two‐way coupled regional climate models for this
region is still in its early stages. In this work, the authors review recent progress in two‐way coupled
ocean‐atmosphere regional climate modeling. Development of coupled models and their applications in the
MC are summarized. Model performances are discussed with a focus on regional oceanic and atmospheric
characteristics. Through a critical review of modeling advances and limitations in simulating sea surface
temperature, precipitation, and oceanic throughflows, the authors identify deficiencies of current models
and discuss possible reasons. The review shows that model biases mainly stem from unresolved physical
processes, inadequate model representations of the coupled system, and uncertainties in model
configurations. The study reveals large‐scale coupled modes of variability, local air‐sea interactions,
atmospheric dynamics, and oceanic processes play various roles in the observed modeling biases. Lastly, the
authors offer suggestions on emerging opportunities for improving regional coupled modeling over the MC.

1. Introduction

The oceans and the atmosphere are the two large components in the Earth's hydroclimate system. The two
are complexly linked to one another and have a significant impact on Earth's weather and climate. While the
atmosphere drives the ocean through the input of momentum, heat, andmoisture fluxes, the ocean regulates
the weather and climate system through its supplies of moisture and heat to the atmosphere system. The
most notable example is the tropical oceans where the dynamics is dominated by the strong coupling
between the ocean and atmosphere. The first and most studied example is the tropical Pacific Ocean, where
the El Niño–Southern Oscillation (ENSO) is the dominant ocean‐atmosphere mode of variability, with the
two oscillating phases of El Niño/La Niña.

ENSO is a coupled atmospheric‐oceanic variation that redistributes heat and momentum over and in the
equatorial Pacific. ENSO has been explained as an oscillatory mode of the coupled ocean‐atmosphere system
or a damped oscillating mode triggered by stochastic forcing that causes sea surface temperature (SST)
growth or decay (C. Wang & Picaut, 2004). In all proposed theories, ENSO involves the positive
ocean‐atmosphere feedback of Bjerknes (1969). In addition, negative feedbacks of the ocean‐atmosphere sys-
tem are needed for the system to transfer between two oscillating phases of El Niño/La Niña. Based on the
coupled ocean‐atmosphere model of Zebiak and Cane (1987), several oscillator paradigms have been devel-
oped with emphases on the negative feedback of reflected Kelvin waves at the ocean western boundary (e.g.,
delayed oscillator (Battisti & Hirst, 1989; Suarez & Schopf, 1988)), a discharge‐recharge oscillator due to
Sverdrup transport (e.g., the recharge oscillator (Jin, 1997)), wind‐forced Kelvin waves in the western
Pacific and anomalous zonal advection (e.g., the western Pacific oscillator (e.g., Wang, 2001; Weisberg &
Wang, 1997)), and the advective‐reflective oscillator (Picaut et al., 1997).

Amore recently discovered atmosphere‐ocean coupledmode of variability is the Indian Ocean Dipole (IOD).
Similar to ENSO, the IOD is also a coupled ocean‐atmosphere phenomenon but in the equatorial Indian
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Ocean (e.g., Saji et al., 1999; Webster et al., 1999). Like ENSO, IOD involves an irregular oscillation of SST
across the Indian Ocean and the change in water temperature gradients results in rising and descending
moisture and air in preferred regions. A positive IOD is associated with unusual cooling of waters off the
coasts of Sumatra and Java in the eastern Indian Ocean, warm SST anomalies and greater precipitation in
the central and western equatorial Indian Ocean, as well as easterly wind stress anomalies along the
equator. A negative IOD is associated with the opposite conditions. IOD events can either develop
independently or coincide with ENSO (e.g., Webster et al., 1999; Xie et al., 2002; Ashok et al., 2004;
Meyers et al., 2007; Yamagata et al., 2004). Similar to the development of ENSO, the growth and decay of
IOD could involve positive Bjerknes feedback and negative atmosphere‐ocean feedbacks (Li et al., 2003;
McPhaden & Nagura, 2014; Schott et al., 2009; Yamagata et al., 2004; Wang et al., 2016). Propagation of
baroclinic Kelvin and Rossby waves and their reflections at the western and eastern boundaries play an
important role in the development and termination of the IOD events (Feng & Meyers, 2003; Masumoto
& Meyers, 1998; Rao et al., 2002; J. Wang & Yuan, 2015; Xie et al., 2002; Yuan & Liu, 2009).

While ENSO and IOD dominate on interannual scales, a remarkable feature of atmosphere‐ocean coupled
mode on the intraseasonal scale is the Madden–Julian Oscillation (MJO) (Madden & Julian, 1971, 1972).
MJO is characterized as an eastward traveling pattern of cloud and rainfall at 4–8 m/s across the

Figure 1. Topography (a; (Jiang & Li, 2018)) and bathymetry of the maritime continent with the key straits (b).
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equatorial Indian and western/central Pacific oceans, with an intraseasonal oscillation of 30–90 days (C.
Zhang, 2005). In the equatorial Indian and western Pacific oceans, an active phase of MJO features an east-
ward, large‐scale movement of strong deep convection and enhanced rainfall, while the suppressed phase is
characterized with the weak convection and precipitation. As a strongly coupled mode, the MJO involves
variations in cloudiness, rainfall, wind and SST; influences the timing and strength of monsoons; affects tro-
pical cyclone numbers and strength; and modulates the diurnal cycle of precipitation (Klotzbach, 2014;
Peatman et al., 2014; Taraphdar et al., 2018; Zhou & Neale, 2012).

Among the tropical bands in the Pacific and Indian Oceans, a particularly important role can be assigned to
the tropical Maritime Continent (MC). This name refers to the region of South Asia and is approximately
bounded by 90–140°E and 10°S to 10°N. It includes the archipelagos of Indonesia, the Malay Peninsula,
New Guinea and the surrounding shallow seas connected by a multitude of straits. From a global point of
view, the MC region has a very complex orography affecting and modifying the overlying Hadley Cell
(Figure 1a). The MC, situated within the tropical Warm Pool and the ascending branch of the global
Walker atmospheric circulation, plays a critical role in the Earth's climate system. It is a significant source
of energy with a large input of heat and moisture fluxes for the global circulation and precipitation
(Gianotti et al., 2012; Neale & Slingo, 2003; Ramage, 1968; Yamanaka et al., 2018). More specifically, the
MC transfers coupled modes of variability, such as ENSO, from the Pacific Ocean to the Indian Ocean, both
through atmospheric teleconnections (Alexander et al., 2002; Klein et al., 1999; Latif & Barnett, 1995; Lau &
Nath, 2003; Wieners et al., 2019) and oceanic ones. From the oceanographic point of view, particularly
important are the Indonesian Throughflow (ITF) (Gordon, 1986; Godfrey, 1996; Lee et al., 2002; Sprintall
et al., 2014) and the South China Sea Throughflow (SCSTF) (Gordon et al., 2012; Liu et al., 2012; Qu
et al., 2005, 2009; Tozuka et al., 2009; Wang, Liu, et al., 2006). The ITF major pathways include inflow paths
through the Makassar Strait and Lifamatola passage and three outflow passages of Lombok, Ombai, and
Timor, while the SCSTF enters through Luzon Strait and exits through the Mindoro and Karimata Straits
(Figure 1b). ITF and SCSTF play important roles of the oceanic MC in transferring and mediating the
coupled modes of variability associated with the IOD and ENSO. In turn, the ITF variability can be wea-
kened by wind forcing associated with IOD, which is often coupled with ENSO but not always in phase with
it (Cai et al., 2012; Meyers et al., 2007; Stuecker et al., 2017). Compensated effects have also been suggested
between direct ENSO and positive IOD as forcing on the ITF (Feng et al., 2018; Liu et al., 2015; Yuan
et al., 2013). The MC also has vitally important effects on the propagation of the MJO. The convective
anomalies of MJO tend to weaken as the oscillation passes through the MC, which may be linked to a num-
ber of processes including a decrease in total surface moisture flux (Sobel et al., 2010), reduced low‐level con-
vergence by the topography (Inness & Slingo, 2006; C. Wu & Hsu, 2009), and an energy dissipation through
the strong diurnal cycle around the MC (Neale & Slingo, 2003).

All the above examples show that the MC region is indeed unique for its location, connecting the Pacific and
India Oceans, and for its extremely complex structure. Despite the significant effects of the MC on Earth's
climate, currently no global model is able to provide sufficient resolution to resolve the
orography/bathymetry complexity satisfactorily with accurate simulations of its circulation and properties
distributions. Regional models are built to enhance regional detail through a more realistic representation
of physics and dynamics by resolving finer scale topography, circulation pattern, thermostructure, and so
forth (Feser et al., 2011; Giorgi, 2019). For the MC's complex structure and strongly coupled features, devel-
opment and application of coupled ocean‐atmosphere regional models are crucial to advance understanding
of this system and its atmospheric and oceanic features and their coupled dynamics.

Furthermore, a very important reason for having two‐way coupled regional atmosphere‐ocean models is
that they constitute the necessary foundation for regional climate modeling for understanding the present
Earth's climate and to make projections of future climates under different anthropogenic forcing scenarios.
This is, in fact, one of the most important recommendations made in the IPCC AR5 (2013) as the only tools
adequate for climate projections in semienclosed basins, such as the Mediterranean Sea, or regions endowed
with extreme geographic complexity such as the MC.

Two points must be clarified here. Following the common definition of the word, this review paper is first a
review of the existing literature, specifically of ocean‐atmosphere coupled models for the MC. It aims to pro-
vide a reference for scientists interested in two‐way coupled regional modeling and an overall view of the
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development of this special area of research in a region of extreme complexity such as the MC. The relevant
scientific questions addressed will emerge along with discussions on model simulations, as well as their
successes and deficiencies. For the interested reader, a complete, recent overview of the scientific issues
related to the MC can be found in “Years of the Maritime Continent (July 2017‐July 2019)” (www.
jamstec.go.jp/ymc/docs/YMC_SciencePlan_v2.pdf). Second, the coupling in this review involves only the
atmosphere and the ocean. Coupled dynamics with the land surface of the region is beyond the scope of
the paper. The scientific and technical issues related to the coupling of the two fluids are complicated
enough without adding another component, and hence further complexity, which would only obscure our
understanding of the results.

2. Two‐Way Coupled Atmosphere‐Ocean Models Over the MC

The development of interactively coupled models (see review by Giorgi, 2019; Giorgi & Gutowski, 2015)
emerged in the late 2000s due to rapid technological advancement and the increase in computational cap-
ability. Over the past two decades, a number of coupling modules have been developed. Examples include
Earth System Modeling Framework (ESMF), the Model coupling Toolkit (MCT), and OASIS‐MCT coupler,
which is the latest version of the OASIS3 coupler interfaced with theMCTwhich offers a fully parallel imple-
mentation of coupling fields regridding and exchange (Valcke, Balaji, Craig, et al., 2012, Valcke, Craig,
Coquart, 2012). In general, coupling datamust be interpolated and transferred between the constituent mod-
els under several constraints such as conservation of physical properties, numerical stability, consistency
with physical processes, and computational efficiency.

In the MC region, coupled models are typically configured with atmospheric and oceanic components that
are integrated forward simultaneously with a coupler controlling the data transfer between them and
coordinating/synchronizing the constituent models. Table 1 provides a summary of existing coupled model-
ing studies for the MC region, which will be discussed in the next sections in the context of the scientific
questions addressed. Table 2 provides a summary and key references of the participating atmosphere and
ocean models.

2.1. SST and Air‐Sea Fluxes

SST and heat/moisture fluxes are the fundamental thermodynamic variables for the tropical climate (Lau &
Nath, 1994). They directly couple the atmosphere and ocean and are responsible for positive/negative feed-
backs between the two. Ocean‐only models are deficient because momentum (wind stress) and air‐sea fluxes
are prescribed as surface boundary conditions for the ocean. Hence, the surface ocean circulation and SST
distributions are passive responses and realistic as much as the surface boundary conditions are.
Atmosphere‐only models are equally deficient because the SST is also prescribed as the lower boundary

Table 1
Configuration of Coupled Models Over the MC

Atmosphere
model

Ocean
model Coupler

Grid resolution
(atmosphere)

Grid resolution
(ocean)

Coupled
domain

Simulation
period

Aldrian et al. (2005) REMO MPI‐OM OASIS3 50 km 20 km to unknown 19°S to 8°N
95–145°E

1979–1999

Wei et al. (2014)
Xue et al. (2014)

RegCM3 FVCOM OASIS3 60 km 7–50 km 20°S to 28°N
85–140°E

1970–1979

Li et al. (2014) WRF POM OASIS3 15 km 10 km 0–30°N
100–135°E

26–29 Sept.
2009

21–24 Sept.
2008

Li et al. (2017) WRF NEMO OASIS‐
MCT

0.75° and 0.25° 0.75° and 0.25° 30°S to 30°N
70–180°E

1989–2009

(1/12)° (1/12)° 20°S to 20°N
90–160°E

1989–1995

Thompson
et al. (2018)

MetUM NEMO OASIS‐
MCT

4.5 km 4.5 km 92–117°E
15°S to 24°N

23–27 Jan. 2016
13–19 Oct. 2016
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conditions for the atmospheric model, constituting a reservoir of heat and moisture that does not
interactively respond to the overlying fluid.

In coupled models, both the SST and air‐sea fluxes are the crucial metrics used for model evaluation and cli-
mate analysis. Examples of these evaluations are given in Figure 2. SST is sensitive to the exchange of air‐sea
surface fluxes. Aldrian et al. (2005) conducted stand‐alone ocean model simulations driven by regional
atmosphere model outputs, which are forced by different reanalysis products. All simulations tend to pro-
duce warm bias (Figure 2a). After the atmosphere‐ocean model is two‐way coupled, warm biases are effec-
tively removed (Figure 2b). On the other hand, instead of producing warm biases of SST (Aldrian
et al., 2005), Wei et al. (2014) showed an ocean‐only model driven by underestimated net heat fluxes (from
MIT General Circulation Model (MITgcm)) as prescribed surface forcing may cause not only a cold bias but
also a significant cold drift of SST. This hypothesis is proven by using heat fluxes from the National Centers
for Environmental Prediction (NCEP) to drive the ocean‐only model, which eliminates the cold drift, thus
also demonstrating the critical role of heat exchange at the air‐sea interface (Figures 2c and 2d). Such a cold
drift is also eliminated by using a coupled model (Figures 2c and 2d), as local air‐sea feedbacks may play an
important role in preventing SST drift through SST → evaporation (latent heat) feedback and SST → low‐
level clouds→ insolation feedback (Xue et al., 2014).

While coupled simulations may effectively reduce both warm bias and cold bias of SST, they are also sensi-
tive to model grid resolution. Li et al. (2017) showed that cold bias that exists in the majority of the model
domain in the low‐resolution (e.g., (3/4)°) experiment can be considerably reduced and turned into a mod-
erate SST warm bias with increased model resolution (e.g., (1/4)°). Interestingly, further increasing the hor-
izontal resolution to (1/12)° increases the magnitude and extent of the warm bias (Figures 2e and 2f). Mixed
results from coupled simulations are also seen in short‐term events such as a cold surge or typhoon
(Thompson et al., 2018). Predicted SST cooling using a coupled model is relatively weaker than in the
ocean‐only simulation and reanalysis data in the region southeast of Vietnam, while the SSTs simulated
in the coupled model are improved in comparison to the ocean‐only simulation in the southern SCS
(Figures 2g and 2h).

The understanding and correct attribution of SST biases is often very difficult, and in many cases, a variety of
reasons may be invoked. Atmosphere‐ocean feedback processes relating the warm pool of the tropical
Indian and the western Pacific Ocean, where the MC is located, occur on a wide range of spatiotemporal
scales. These feedbacks range from large regional and basin scales affecting ENSO and IOD variabilities

Table 2
Summary and Key References of the Participating Atmosphere and Ocean Models

Acronym Description Key references

REMO The REgional MOdel (REMO) is based on the Europamodell, the former numerical weather prediction model of
the German Weather Service. Further development of the model took place at the Max‐Planck‐Institute for
Meteorology, now further developed further developed and maintained by the Climate Service Center
Germany (GERICS).

Jacob and Podzun (1997) and
Jacob et al. (2001)

RegCM3 Regional Climate Model Version 3 (RegCM3) is a three‐dimensional, hydrostatic, compressible, primitive
equation, σ‐coordinate regional climate model. It is maintained in the Eltahir Research Group at MIT, as
well as at the International Center for Theoretical Physics (ICTP).

Giorgi and Mearns (1999) and
Pal et al. (2007)

WRF The Weather Research and Forecasting (WRF) Model is a next‐generation mesoscale numerical weather
prediction system designed for both atmospheric research and operational forecasting applications,
maintained and distributed by the National Center for Atmospheric Research (NCAR).

Skamarock et al. (2008)

MetUM UK Met Office Unified Model (MetUM) is a unified model that has been used at the Met Office for both
low‐resolution climate modeling and high‐resolution operational numerical weather prediction (NWP).

Davies et al. (2005)

MPI‐OM TheMax Planck Institute oceanmodel (MPIOM) is the ocean‐sea ice component of theMPI‐Earth SystemModel.
MPIOM is a primitive equation model (C‐Grid, z‐coordinates, free surface) with the hydrostatic and
Boussinesq assumptions made.

Marsland et al. (2003)

FVCOM Finite Volume Community Ocean Model (FVCOM) is a prognostic, unstructured‐grid, finite‐volume, free‐
surface, 3‐D primitive equation coastal ocean circulation model.

Chen et al. (2006)

POM The Princeton Ocean Model (POM) is a community general numerical model for ocean circulation that can be
used to simulate and predict oceanic currents, temperatures, salinities and other water properties.

Mellor (1998)

NEMO Nucleus for European Modeling of the Ocean (NEMO) is a modeling framework for research activities and
forecasting services in ocean and climate sciences, developed in a sustainable way by a European consortium.

Madec et al. (2017)
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(Alexander et al., 2002; Lau et al., 2005; Wang,Wang et al., 2006; Xie et al., 2009), to intraseasonal Kelvin and
Rossby wave modes that sustain MJO (Wang & Xie, 1998; Zhang, 2005) and to local negative feedbacks on a
daily and weekly scale (Xue et al., 2014). Various feedbacks on tropical SST include cloud feedback
mechanisms (Miller, 1997; Ramanathan & Collins, 1991), wind‐evaporation feedback (Hartmann &
Michelsen, 1993; Zhang et al., 1995), and ocean dynamics (Clement et al., 1996; Sun & Liu, 1996). MJO
interacts with air‐sea fluxes over the MC during its eastward propagation, which is modulated by ENSO
and IOD events. The MJO signature increases over the MC warm pool during the development of the
ENSO warm phase (Hendon et al., 2007; Kessler, 2001), and the intraseasonal air‐sea heat flux variability

Figure 2. An example of coupled simulation (b) reduces a warm bias of uncoupled simulation (a) in comparison to
GISST (Aldrian et al., 2005); an example of the coupled (red) simulation reduces the cold bias and cold drift of
ocean‐only (green) simulation in comparison to SODA SST (black) on monthly (c) and yearly (d) average (Wei
et al., 2014); an example of SST biases sensitive to model grid resolution in coupled simulation. Cold bias relative to
AVHRR at low resolution ((3/4)°) model (e) and warm bias at high‐resolution ((1/12)°) model (f) (Y. Li et al., 2017); an
example of coupled model showing mixed results over different regions. Underestimated SST cooling (warm bias) in the
coupled simulation (black) compared to the ocean‐only simulation (blue) and reanalysis data (red) in the region
southeast of Vietnam (g), while the coupled SST is improved with respect to the ocean‐only simulation in the southern
SCS (h) (Thompson et al., 2018).
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due to MJO events may account for its 69–78% intraseasonal SST variability (Napitu et al., 2015). Many
modeling studies suggested that MJO simulations are sensitive to model configurations (e.g., vertical
resolution and cumulus parameterization), but a comprehensive understanding of fundamental dynamics
of the MJO is still missing (Batstone & Hendon, 2005; Kapur & Zhang, 2012; Seo & Xue, 2005). Again,
these contrasting results in different subregions of the coupled climate model are difficult to rationalize
and are possibly due to multiple causes requiring very detailed sensitivity studies to different resolutions,
boundary conditions, parameterizations, and so forth.

2.2. Precipitation

Unlike interactions between SST and air‐sea heat fluxes, for which the coupling mostly produces noticeable
improvements in the simulations, coupling effects on precipitation are controversial. This is partly because
SST indeed affects precipitation but only indirectly through both dynamic and thermodynamic pathways. As
a result, in some coupled simulations, the precipitation patterns are significantly improved; in others, they
are almost unaffected. On the one hand, rainfall biases correlate with SSTs to a certain extent, which is

Figure 3. An example of coupled simulation reduces a rainfall bias of uncoupled simulation in SCS (a) but worsens the precipitation results over theMolucca Sea (b)
(Aldrian et al., 2005); an example of the rainfall bias relative to observations for coupled simulation during wintertime (c) and summertime (d) and the same but for
atmosphere‐only simulation during wintertime (e) and summertime (f) (Wei et al., 2014); an example of precipitation and wind biases sensitive to model grid
resolution in coupled simulation. Biases relative to TRMM/QuickSCAT observation in the low resolution ((3/4)°)model (g) andwarmbias in the high‐resolution ((1/
4)°) model (h) (Y. Li et al., 2017).
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evidenced in several coupled modeling studies over the MC. Weak pattern correlations can be found
between the warm bias of SST (Figure 2f) and the overestimated precipitation (Figure 3h). A sensitivity
experiment also shows that lowering the prescribed SST can effectively correct the rainfall overestimation
(Aldrian et al., 2004). On the other hand, in all air‐sea coupled simulations over the MC, model biases in pre-
cipitation relative to observational data are much more significant than the model difference between
coupled and uncoupled simulations (e.g., Aldrian et al., 2005; Wei et al., 2014; Thompson et al., 2018). For
example, both coupled and uncoupled models display similar and significant precipitation errors
(Figures 3c–3f), which suggests that precipitation errors must be attributed to other factors rather than only
air‐sea coupling.

The challenge in rainfall simulation lies in the fact that many factors affect precipitation over the MC, and
these processes are extremely complex, involving convection, cloud, and annual and seasonal large‐scale
atmosphere circulation, coastal breeze, and land topography. As one example, the rainfall complexities
and their linkage to wind characteristics in coupled simulations are demonstrated by Aldrian et al. (2005).
Their simulations over three seas (the West Sumatra, the Molucca Sea, and the southern part of the SCS),
which represent the monsoonal, antimonsoonal, and semimonsoonal regions, show that while the coupled
model reduced SST warm biases in all these regions, the model performances in rainfall simulation were
very different. The coupled model effectively reduced the rainfall bias particularly for the Southern SCS
(Figure 3a) but increased the precipitation error over the Molucca Sea (Figure 3b), and no significant impact
was found in the West Sumatra region. As intense oceanic rainfalls are often found in areas with surface
wind convergence, another example (Li et al., 2017) shows that overestimated easterlies over the equatorial
Pacific can transport excessive moisture into the north and south hemisphere convergence zones and over-
estimate rainfall over these regions (Figure 3h).

Uncertainty is also related to model configuration. While the increased model resolution may turn dry biases
into wet biases (Figures 3g and 3h) (Li et al., 2017), other studies report the benefit of a high‐resolution
coupled model in resolving precipitation extremes (Thompson et al., 2018). As precipitation extremes are
often caused by energetic local convective activities, the impact of model resolution on simulating convective
rainfall is vital as it is fundamental over the MC. Similar to the SST, the causes of the deteriorated precipita-
tion simulation when increasing the horizontal resolution have not been fully understood.

The interactions of multiscale processes further complicate the rainfall simulation. The MC is characterized
by a remarkable diurnal cycle of convection and precipitation, which is driven by a thermodynamical
response to solar radiation and interfered with several key mesoscale processes (Yang & Slingo, 2001).
Additionally, mountain‐valley winds reinforce sea breezes to enhance precipitation over land, which can
further be amplified by the cumulus merger processes (Qian, 2008). On intraseasonal timescales, the MJO
modulates the diurnal cycle (Oh et al., 2012; Peatman et al., 2014; Sui & Lau, 1992; Sui et al., 1997;
Suzuki, 2009; Tian et al., 2006) to complicate rainfall patterns. The active phase of the MJO may enhance
precipitation over ocean but suppress precipitation over land (Oh et al., 2012; Rauniyar & Walsh, 2011).
Again, all these complexities related to air‐sea feedbacks, interactions between different spatiotemporal
scales, and model configurations make it challenging to attribute the observed model errors.

2.3. Ocean Throughflows

The coupled dynamics affects not only the surface variability in the ocean but also the volume transport, par-
ticularly the throughflows, that is SCSTF and ITF. The former one brings cold, salty water from the western
Pacific into SCS through the Luzon Strait and exits through the Mindoro and Karimata Straits (Gordon
et al., 2012; Qu et al., 2005, 2009; Xu &Malanotte‐Rizzoli, 2013; Zhou et al., 2008). The latter one constitutes
the major pathway of warm, freshwater from the Pacific to enter the Indian Ocean through the Indonesian
archipelago, transferring climate signals and affecting the energy budget of both oceans (Gordon et al., 2008,
Gordon et al., 2010; Schiller et al., 2010). In particular, the ITF vertical structure and temporal variability are
affected by the SCSTF (Fang et al., 2010; Gordon et al., 2012; Qu et al., 2009; Tozuka et al., 2007), as the
SCSTF may create an upper‐layer freshwater plug that spreads into the main channel (Makassar Strait) of
the ITF (Gordon et al., 2012; G. Jiang et al., 2019; M. Li et al., 2019). This can lead to an anomalously large
dynamic height that weakens the along‐strait pressure gradient and thus the southward ITF transport in the
upper layer (Gordon et al., 2012; Lee et al., 2019). Large observational programs such as the International
Nusantara Stratification and Transport (INSTANT, Gordon et al., 2008; Sprintall et al., 2004), the
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Monitoring the ITF (MITF, Gordon et al., 2012, 2019), the Transport, Internal Waves and Mixing in the
Indonesian Throughflow regions (TIMIT, Wei et al., 2019), and the SCS‐Indonesian Seas
Transport/Exchange (SITE, Susanto et al., 2010; Wei et al., 2019) were developed to understand the impor-
tance of the ITF and SCSTF for the tropical climate.

The importance of the ITF in modulating the regional climate of the MC, and vice versa, has been exten-
sively studied by linking the throughflows to the IOD‐ENSO events (Feng et al., 2018; Liu et al., 2015;
Yuan et al., 2011, 2013). The ITF injects warm and salty water into the eastern Indian Ocean and modifies
the IOD strength (Gordon et al., 2003). On the other hand, the IOD variability can feed back to the MC
and even the western Pacific by the oceanic bridge (e.g., Kelvin waves, Yuan et al., 2011 and 2013) and
the atmospheric bridge (e.g., MJO eastward propagation, Napitu et al., 2015; Waliser et al., 1999;
Zhang, 2005). The ocean‐only model is obviously unable to include the atmospheric bridge feedback, and
therefore, the simulated throughflow characteristics are only a response driven by the Pacific Ocean forcing.

The understanding of ITF modulation of climate leads to an expectation that two‐way coupled models may
be beneficial to the ITF simulation. J. Wei et al. (2014) demonstrated that the fully coupled models overall
produced the best estimate of the volume transport of the ITF and its seasonal variability in the Makassar
Strait, while the values from ocean‐only simulations were all underestimated. Although the coupled model
by Aldrian et al. (2005) was not specifically designed to explore this variability and the coupled domain was
focused on the region where improvement in precipitation is required, their results show that the coupled
model produces stronger variability and southward transport in the long‐term simulation of the ITF.
Neither of the studies reveals the underlying dynamics associated with the coupled and uncoupled model
performances in simulating the ITF transport. All the other coupled model studies listed in Table 1 have
not explored the ITF issue.

3. Uncertainty in Models
3.1. Atmosphere Modeling

Rainfall simulation is one of the essential characteristics in the regional model over the MC that begs
improvement. Local convective activities are the fundamental rainfall‐producing mechanism in this region,
which are still not well resolved in models. This is particularly true for climate modeling, as model grid reso-
lution is often coarse (tens of km) to accommodate decadal‐scale simulations for the sake of affordable com-
putational cost. Unless the regional model resolution can be sufficiently high (e.g., 3 km or less), the
numerical schemes for parametrizing convection are essential. A number of regional climate models show
varying patterns of rainfall bias. These include both the underestimation and overestimation of precipitation
rates spatially across the MC on the seasonal or annual scale and often present an overestimation (underes-
timation) of low‐ (high‐) intensity rainfall, as well as a mismatch of the rainfall peak on a diurnal scale
(Chow et al., 2006; Gianotti et al., 2012; Y. Li et al., 2017). The results also indicate that the primary driver
for the observed rainfall errors in the model is within the atmospheric component, and these errors are
attributed to user choices of regional climate model configuration and, more fundamentally, the challenge
in accurately resolving the convective rainfall process.

Several studies assess the impact of the atmosphere model configuration on model performance in rainfall
simulation. Francisco et al. (2006) evaluated a set of simulations of monsoon seasons over the Philippine
archipelago and surrounding oceans. Their study shows that model rainfall patterns are susceptible to the
choices of lateral boundary fields (NCEP vs. ERA40) and the ocean surface flux scheme (BATS vs. Zeng).
With ERA40 lateral forcing, the model consistently predicts higher amounts of precipitation in comparison
to the simulation using NCEP. Similarly, with the BATS scheme, the model also predicts more significant
amounts of precipitation in contrast to the simulation with the use of Zeng's scheme. Therefore, different
combinations of model configurations (e.g., ERA40 + Zeng's scheme vs. NCEP+BATS) may provide similar
simulation results of precipitation. “As a result, it is difficult to unambiguously establish which of the model
configurations is best performing.” (Francisco et al., 2006).

Similarly, Gianotti et al. (2012) find that the NCEP data set is much drier than ERA40 and causes a dry bias
over ocean areas (Figure 4). They conclude that the NCEP data set is less suitable as lateral boundary con-
ditions than the ERA40 data set. Moreover, different convection schemes influence model results
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significantly over the tropical region (Davis et al., 2009; Zhou & Neale, 2012). Modeling exercises (Figure 4)
over the MC also show that using the Grell scheme with the Fritsch‐Chappell closure results in a dry bias
over the land and a wet bias over the ocean, while the Grell scheme with the Arakawa‐Schubert closure
causes dry biases over both land and ocean. On the contrary, using the Emanuel scheme may present a
significant wet bias over the entire model domain (Gianotti et al., 2012).

The fact that convective rainfall errors persist to varying degrees, regardless of the choice of model configura-
tion, suggests a fundamental uncertainty in the representation of the convective process in the regional
model simulation. Convection results in entrainment and detrainment of air into and out of convective
plumes, yet such interactions are usually crudely parameterized with fractional convective
entrainment/detrainment rates inmost schemes (Y.Wang et al., 2007). Also, errors can stem from the uncer-
tainty of how to activate the convective adjustment, which involves “establishing threshold criteria for trig-
gering convection and creating sufficient environmental conditions to meet those criteria” (Gianotti
et al., 2012).

Besides, the uncertainty of model results associated with model grid resolution, and the difficulty in addres-
sing this issue, is significant. As shown in the previous section, model biases are grid resolution dependent
(e.g., Y. Li et al., 2017). This suggests that when the model resolution is not sufficiently high to achieve the
convergence of model results, resolution‐induced uncertainty is observed. Although it may be related to the
representation of convection in the model, the issue has yet to be examined more carefully. Similar model
performance is also observed in uncoupled regional climate modeling; Im and Eltahir (2018) show that “a
higher resolution (12 km vs. 27 km) has improved model performance in simulating the migrating

Figure 4. An example of average diurnal cycle of rainfall simulation over the period 1998–2001using different model
configuration in comparison to TRMM over land (upper panel) and over ocean (lower panel). GFC: Grell scheme with
Fritsch‐Chappell; GAS: Grell scheme with Arakawa‐Schubert; EMAN: Emanuel scheme; GFCNCEP: GFC with NCEP
lateral forcing instead of ERA40; EMANNCEP: EMAN with NCEP forcing instead of ERA40. (Gianotti et al., 2012).
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patterns of rainfall in the vicinity of offshore along western Sumatra and
northern Java, two regions characterized by sharp gradients and complex
topography. … However, such improvement is not consistent across the
whole domain”. Similarly, many issues associated with the uncertainty
of model configuration and unresolved dynamics are also seen in the
ocean model component.

3.2. Ocean Modeling

ITF affects the ocean circulation, thermal structure, and air‐sea exchange
over the MC (Godfrey, 1996; Lee et al., 2002; Macdonald, 1993; Vranes
et al., 2002) and is an essential characteristic that seeks improvement in
the ocean modeling for this region. The variability of ITF is influenced
by both Rossby and Kelvin waves generated by remote zonal winds, deep
upwelling in the Pacific basin, sea level and pressure differences between
the Pacific and Indian Ocean, and so forth. (Sprintall et al., 2014; Feng
et al., 2018), all of which may introduce uncertainties to regional ocean
model.

The Mindanao Current retroflection is another crucial factor affecting the
ITF variability through the interaction between the Rossby waves and the
western boundary currents. Theoretical analysis of the dynamics of the
Mindanao Current flowing across a boundary gap was conducted by
Arruda and Nof (2003), Yuan and Wang (2011), and Z. Wang and
Yuan (2012). However, the in situ information about nonlinear reflection

of the Rossby waves at the western boundary has not been readily available due to a lack of observation data.
Recently, based on four consecutive years of mooring observations in the Indonesian Seas, Yuan et al. (2018)
obtained for the first time the upper‐ocean circulation in the Maluka Sea, the entrance of ITF, which pro-
vided solid evidence for the theoretical analysis in Yuan and Wang (2011) and Z. Wang and Yuan (2012).
Unfortunately, very few ocean models or coupled models are able to simulate the Mindanao Current retro-
flection variability well, which may be a future topic of regional coupled model simulation at the ITF
entrance.

Another example that indicates the uncertainty in model configurations is the fidelity of ocean reanalysis
products, which are often used as lateral boundary conditions for regional ocean models. By comparing total
ITF transport estimated from 14 ocean data assimilation products, Lee et al. (2010) find that although these
products have overall consistency, results do show considerable variability among these reanalysis products.
More importantly, all but one failed to resolve the strong semiannual signal of ITF. Unlike atmospheric mod-
eling, there are no model studies on the MC that systematically investigate the impact of the model config-
uration on model performances and corresponding errors. Instead, most ocean models for the MC are
validated through model‐data comparisons, mainly against the data from the INSTANT program (Gordon
et al., 2008; 2010). Although regional models showed their success to a certain extent, challenges remain
in understanding how to improve the model accuracy in simulating ITF variability and correctly attribute
errors to underlying dynamics, model resolution, and boundary forcing.

For example, the newly releasedMITF data (Gordon et al., 2019) demonstrated significant interannual varia-
bility of theMakassar Throughflow that was poorly resolved by the previous model simulations or reanalysis
data set. The subsurface velocity maximum (V‐max) is mispredicted with respect to amplitude or depth in
many reanalysis data sets such as SODA, OFES, and ATOP. A recent model effort by Jiang et al. (2019)
obtained a more realistic ITF profile by adopting a higher resolution with ~3 km within the Makassar
Strait (Figure 5). This indicates that model resolution may play a critical role in model performance. The
model resolution affects not only model results but also underlying dynamics. Early modeling work suggests
that the ITF velocity profile is primarily controlled by the southward Karimata flow inhibiting the south-
ward surface ITF (Tozuka et al., 2009; 2007). However, their work used a global ocean model, with a coarse
resolution varying from 0.4° to 2°, which cannot resolve the Mindoro‐Sibutu Strait (~40 km wide) and is
scarcely enough to resolve the Makassar Strait (~200 km wide). On the other hand, based on the HYCOM
reanalysis that has a higher resolution of (1/12.5)°, Gordon et al. (2012) proposed another mechanism for

Figure 5. Time‐averaged (2004–2012) vertical profile of V‐component of
INSTANT data (black solid line), FVCOM (red solid line), SODA (green
dashed line), OFES (blue dashed line), and ATOP (purple dashed line) at
the Makassar Strait. SODA and OFES are reanalysis data, ATOP is an
ocean‐only model, and FVCOM is the ocean component of a fully coupled
model (FVCOM‐RegCM).
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which the SCSTF brings fresher and more buoyant SCS water into the Sulawesi Sea through the
Mindoro‐Sibutu passage, building up a west‐to‐east pressure head toward the Pacific Ocean and thus inhi-
biting the surface Mindanao‐Sulawesi inflow. By closing the Luzon, Karimata, and Mindoro‐Sibutu Straits
in an atmosphere‐ocean coupled model with 3 km resolution in a set of sensitivity experiments, Jiang
et al. (2019) suggested that the Karimata and Sibutu Straits affect the Makassar velocity profile only in the
seasonal time scale. Thus, the interannual variability of the V‐max depth likely originated from the upstream
Mindanao Current. A similar vertical profile of the Mindanao Current was observed by Zhang et al. (2014) at
the location of 8°N,127°E, which is likely carrying ENSO signals transferred from the North Equatorial
Currents (NEC) and large‐scale trade winds.

The vertical mixing (and its representation in models) is another important factor that regulates water mass
transformation and transport within the ITF region (Ffield & Gordon, 1996; Koch‐Larrouy et al., 2007;
Robertson & Ffield, 2005). Large tidal mixing signatures were observed in the Indonesian seas, and “strong
vertical mixing modifies the thermocline by transferring surface heat and freshwater to deeper layers before
the upper water column is exported to the Indian Ocean” (Ffield & Gordon, 1996). Furthermore, the energy
can be effectively transferred from barotropic tides to baroclinic tides with a mean magnitude that is ~20
times higher than averaged in the global ocean (Koch‐Larrouy et al., 2007). Moreover, vicious internal tidal
energy is well confined in this region due to the existence of multiple semienclosed seas (Koch‐Larrouy
et al., 2007). Vertical mixing associated with barotropic and baroclinic tides has often been parameterized
or explicitly included in regional models in the MC region. Inclusion of tidal mixing may improve water
mass characteristics (e.g., T‐S diagram) in the different Indonesian seas and may result in increased trans-
port through the Makassar Strait, thus resulting in different transport partitioning and change in net total
ITF transport at the outflow passages (Schiller, 2004). Parameterization of vertical mixing also impacts the
upper ocean thermal structure. Inclusion of nonbreaking wave‐induced mixing may improve modeling of
thermocline depth in the SCS, which improves the simulation in SST cooling and typhoon intensity through
air‐sea feedbacks (Li et al., 2014).

4. Conclusions and Recommendations

After having examined in the previous sections the successes and deficiencies of regional coupled models for
the MC, we present here those that we believe are the most important issues which need further
investigation.

For the atmospheric component, convective processes are essential dynamic features over the MC, and no
regional climate model has adequately resolved them. In addition to allocating efforts to evaluating existing
numerical schemes, there is a need to develop approaches suitable for theMC. Convective activity influences
coupled dynamics not only through vertical transport of heat and moisture but also through the interaction
of cloud‐radiation and convection (Gianotti & Eltahir, 2014a, 2014b; Ramanathan & Collins, 1991;
Tiedtke, 1988, Xue et al., 2014). Atmospheric motion affects cloud formation, rainfall, and associated atmo-
spheric convection, thus creating convective‐cloud‐radiative feedback.

Furthermore, the parameterizations of fractional coverage of convective cloud and autoconversion of con-
vective rainfall in large‐scale regional climate models (i.e., the model grid size is much larger than the scale
of a cumulus cloud) are still very crude. Efforts to better resolve the effects of subgrid variability in convective
activity on convective cloud formation and autoconversion are recommended. Recent modeling work
(Gianotti & Eltahir, 2014a, 2014b) shows some success in predicting subgrid variability of convective cloud
and associated rainfall reduction using a combination of both the cloud liquid water (CLW) simulated in a
climate model with climatological CLW and rainfall intensity estimated from observational data. However,
more research is still needed.

From the oceanic point of view, ITF is connecting western Pacific and eastern Indian Oceans and therefore is
directly impacted by Pacific circulations at its entrances and by the Indian Ocean at its exits. There have been
many modeling studies on the ITF variability associated with the Pacific side. However, most of them
emphasized on the impacts of the northwestern Pacific on the ITF transport (Gordon et al., 2012; Hirst &
Godfrey, 1993; G. Jiang et al., 2019; Li et al., 2019; Qu et al., 2005; Wei et al., 2016). The northwestern
Pacific circulations are crucial to the ITF transport; meanwhile Li et al. (2019) show that the lower layer
ITF is instead controlled by the southwestern Pacific circulations, the South Equatorial Current (SEC). In
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addition, the lower layer of the Makassar Throughflow was previously deemed to be insignificant compared
to the upper layer. Yet it increases significantly during 2016, reaching an equivalent amount to the upper
layer. Jiang et al. (2019) suggest that the vertical profile of ITF at Makassar Strait can be modulated by the
Mindanao Current and its retroflection. Therefore, improving the modeling strategy of resolving boundary
currents of the western Pacific is vital for better resolving the ITF vertical structure and its variability. On the
other hand, as the ITF exits into the Indian Ocean, its variability can be weakened by wind forcing associated
with IOD. Compensated effects between IOD and ENSO on the ITF have been reported (Feng et al., 2018;
Liu et al., 2015; Stuecker et al., 2017; Yuan et al., 2013). The roles of the ITF exit flows into the Indian
Ocean and its feedbacks should also be further investigated.

Within the MC, both more extensive data sets and higher‐resolution regional ocean models are crucial to
resolve the Mindoro‐Sibutu Strait (~40 km wide), the Makassar Strait entrance (~80 km), Lifamatola
Passage (~36 km, up to 2,000 m deep), the ITF exit straits, Lombok Strait (~20 km), and Ombai Strait
(~40 km). Not only the total transport of the throughflow but also their vertical structures are in need of bet-
ter resolution. As the INSTANT‐MITF data are extended to 2017 (Gordon et al., 2019), the new data reveal
very different structures on the Makassar Throughflow profile, which changes significantly in response to
the 15/16 summer El Niño. From the modeling point of view, the importance of fully resolving the narrow
straits and the bathymetry of the oceanic MC cannot be emphasized enough. Recent studies suggest that the
relative importance of the Mindoro‐Sibutu pathway cannot be established for the upper layer circulation of
the SCS and the ITF unless the model resolution is dramatically increased (Jiang et al. in press).

Apart from resolution issues, including freshwater exchange and tides in coupled models might be critical to
achieving accurate simulations. Recent studies have shown that the freshwater exchange between atmo-
sphere and ocean plays an important role (Gordon et al., 2012; Lee et al., 2019), which, however, has rarely
been implemented in coupled models. As pointed out by Gordon et al. (2012), freshwater accumulation
within the Sulawesi Sea, Makassar Strait, and the Java Sea might be crucial to influence ITF variability
and maintain its subsurface V‐max profile. Lee et al. (2019) further reveal the dominant contribution of local
precipitation and runoff to boreal winter‐spring freshening in the Java Sea. Such freshening is associated
with an upstream decrease of sea level anomaly along the Makassar Strait, corresponding to a reduced
along‐strait pressure gradient that would weaken the ITF. On the other hand, most of the present regional
models do not include tides, as they focused on the seasonal or interannual time scales. Modeling studies
(Ffield & Gordon, 1996; Koch‐Larrouy et al., 2007; Tranchant et al., 2016) show that tidal mixing is impor-
tant in the straits and passages to accurately represent the throughflow variability, as well as the water
properties.

A more accurate representation of the coupled dynamics in the model might also be necessary. One missing
feedback mechanism in coupled models for the MC region is the momentum exchange induced by surface
waves. The representation of the wave effect on the surface roughness and the resulting change in wind
stress should be explicitly resolved in the coupled modeling, which in turn affects the oceanic and atmo-
spheric simulation, including surface fluxes and vertical mixing calculations (Drennan et al., 2005; Edson
et al., 2013; Shi & Bourassa, 2019). The wave‐current‐induced surface roughness and the near‐surface wind
change in the neutral log profile play a vital role in sea‐state response to the wave‐current‐stress coupling,
thus causes considerable changes in the latent and sensible heat fluxes (Shi & Bourassa, 2019). To that
end, the three‐way coupling of the wave, circulation, and atmospheric dynamics needs more attention.

The development of regional coupled climate models over theMC is still in its infancy. Current studies using
two‐way atmosphere‐ocean coupled models focus more on model development and validation. We have
identified critical physical mechanisms for this region and associated model biases/drifts. Our review shows
that large‐scale coupled modes of variability, local air‐sea interactions, atmospheric/oceanic dynamics, and
processes all contribute to the uncertainties observed in model simulations. We hope that this review will be
not only useful to the community but will also stimulate further efforts in those areas we believe are the most
important and least understood.
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