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Abstract
The Laurentian Great Lakes are one of the most prominent hotspots for the study of climate change induced

lake warming. Warming trends in large, deep lakes, which are often inferred by the observations of lake surface
temperature (LST) in most studies, are strongly linked to the total lake heat content. In this study, we use a 3D
hydrodynamic model to examine the nonlinear processes of water mixing and ice formation that cause changes
in lake heat content and further variation of LST. With a focus on mechanism study, a series of process-oriented
experiments is carried out to understand the interactions among these processes and their relative importance
to the lake heat budget. Using this hydrodynamic model, we estimate the lake heat content by integrating over
the entire 3D volume. Our analysis reveals that (1) Heat content trends do not necessarily follow (can even be
opposed to) trends in LST. Hence, using LST as a warming indicator can be problematic; (2) vertical mixing in
water column may play a more important role in regulating lake warming than traditionally expected. Changes
in the water mixing pattern can have a prolonged effect on the thermal structure; (3) Ice albedo feedback, even
in cold winters, has little impact on lake thermal structure, and its influence on lake warming may have been
overestimated. Our results indicate that climate change will not only affect the air-lake energy exchange but can
also alter lake internal dynamics, therefore, the lake’s response to a changing climate may vary with time.

Climate change induced lake warming in both tropical and
high latitude lakes has been investigated recently by numer-
ous studies (Burnett et al. 2003; Livingstone 2003; O’Reilly
et al. 2003; Verburg et al. 2003; Coats et al. 2006; Vollmer
et al. 2008; Adrian 2009; Arvola et al. 2009; Schneider
et al. 2009; Schneider and Hook 2010; Fink et al. 2014; Grone-
wold et al., 2015). For example, O’Reilly et al. (2015) found
that warming lakes are geographically distributed by using
worldwide synthesis of in situ and satellite-derived lake data,
revealing that the warming rate of seasonally ice-covered lakes
is 0.72�C per decade while ice-free lakes are experiencing
0.53�C per decade from 1985 to 2009.

It has been observed that east-central North America,
including the Laurentian Great Lakes, is one of the most
prominent hotspots where lake surfaces have warmed more
rapidly than the ambient air during the summer (Austin and
Colman 2007; Lenters et al. 2013). A warming trend of lake

surface temperature (LST) in the Laurentian Great Lakes in the
last century was reported by McCormick and Fahnenstiel
(1999). Austin and Colman (2008) estimated an average sum-
mer (July, August, and September) LST warming rate of �
0.278�C per decade over the last century, with a dramatic
increase up to 0.118�C per year after the 1980s using the off-
shore buoy data. In addition, similar results from 1986 to
2002 were reported by Dobiesz and Lester (2009), estimating
that LST of Lakes Huron and Ontario during August have been
rising at annual rates of 0.084�C and 0.048�C, respectively,
while the trend for Lake Erie, the shallowest of the Great
Lakes, was smaller and insignificant.

While it is suggested that the mechanism for summer
warming in the shallow lakes, such as Lake Erie, is due to a
rapid response of the lakes to synchronous increases in solar
radiation and air temperature during the summer (Adrian
et al. 1999; Gerten and Adrian 2000; Livingstone 2003; Straile
et al. 2003; Piccolroaz et al. 2014), the mechanism responsible
for large, deep lakes (Gorham 1964; Robertson and Ragotzkie
1990; Mazumder and Taylor 1994) such as Lake Superior is dif-
ferent. Due to the much larger heat capacity and thermal iner-
tia, the deeper lakes integrate the effects of increasing air
temperature over longer periods of time (Verburg et al. 2003;
Arvola 2009; Piccolroaz et al. 2015; Zhong et al. 2016). For
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example, Fig. 1 presents 20-yr climatologies (1995–2013) of
the observed air temperature and LST in Lake Superior. For the
air temperature over Lake Superior, the largest variability with
a range of � 15–20�C occurs during the winter time, and
much smaller variability (� 8%) is shown during the summer.
In contrast, due to the large thermal inertia, strong interann-
ual and intra-lake variability of the LST is observed during
summer time with a fluctuation range of � 6–20�C in mid-
August. This phenomenon clearly shows the LST variation of
Lake Superior does not solely follow changes in air tempera-
ture. For Lake Superior, the atmospheric condition is appar-
ently not the only factor that controls changes in LST.
Internal lake processes and heat transfer must also play very
important roles in regulating lake warming in Lake Superior.

It is no question that the combination of winter lake
inverse stratification, ice-coverage, solar radiation, onset of
spring stratification, and air temperature influences lake heat
absorption and affects lake surface warming during the

subsequent summer (Van Cleave et al. 2014; Piccolroaz
et al. 2014, 2015; Mason et al. 2016; Sugiyama et al. 2018),
which results in significant spatial and temporal variation in
warming patterns within and across the Great Lakes (Mason
et al. 2016). However, there is no consensus regarding how
these mechanisms control the LST warming, and the lake–ice–
atmosphere interaction allows for the formation of multiple
climate regimes with prolonged impact on lake warming
(Sugiyama et al. 2018). For example, Austin and Colman
(2007) suggested that winter ice cover seems to play an impor-
tant role in determining subsequent summer LST in Lake
Superior with a majority of the interannual variability in the
summer LST explained by the previous winter’s ice coverage.
Their study also suggested that ice coverage changes the
dynamics of thermal exchange primarily due to ice albedo
effect because ice significantly increases the surface albedo,
reducing the net shortwave radiation absorbed by the lake. As
such, lake warming reduces the ice concentration and further

Fig. 1. Twenty-year climatology (1995–2013) envelops observed near-surface air temperatures (a) for stations 45001, 45004, 45006, DISW3 and PILM4
and LSTs (b) for stations 45001, 45004, and 45006 with mean values (red lines) in Lake Superior. See Fig. 2 for buoy locations.
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increases the solar heat input to the lake, leading to more
rapid warming. Schenider and Hook (2010) pointed out that
changes in insolation, ice cover, and other factors are impor-
tant contributing factors, and declining ice cover is not a pre-
requisite for accelerated summertime lake warming (Schneider
et al. 2009; Zhong et al. 2016). Furthermore, Zhong
et al. (2016) concluded that antecedent winter ice cover plays
a minor role in changes in the accelerated warming of Lake
Superior. Mild winter conditions, together with increased solar
radiation, air temperature during spring, causes an earlier
onset and increased strength of springtime stratification
(Scheffer et al. 2001; Verburg et al. 2003; Arvola 2009; Piccol-
roaz et al. 2015), resulting in enhanced heat absorption by

surface water and thereby contributing to lake surface warm-
ing (Piccolroaz et al. 2015; Zhong et al. 2016). Hence, the
question of how the heat transfer and ice coverage influence
the LST remains unclear.

Furthermore, lake warming, which is inferred by LST obser-
vation in most of the previous studies, is in fact strongly
linked to the total heat content in the lake through the winter
to the following summer. Ecologically, understanding the
change in lake heat content is much more important than
LST (Lynch et al. 2010; Collingsworth et al. 2017). Even rela-
tively small changes in the thermal characteristic of lakes can
cause major shifts in the aquatic ecosystem such as the phyto-
plankton, bacterioplankton, and zooplankton populations and

Fig. 2. FVCOM model mesh with unstructured triangular grids in the upper panel, and the bathymetry of Lake Superior in the lower panel. The buoy
stations are marked as black dots, a reference cross-section is denoted by a black dashed line.

Ye et al. Water mixing, ice, and lake warming

3



associated metabolic processes (Tulonen et al. 1994; Drinkwater
2003; Adrian 2009; Arvola 2009; Lynch et al. 2010; Butcher
et al. 2015; Collingsworth et al. 2017). For example, it has been
reported that the lake regime shifts have influenced the struc-
ture of species-dependent cyanobacteria in western countries
(Wagner and Adrian 2009) and even a 1�C temperature drop
could decrease the critical fish density by � 5% in a sample of
71 shallow Dutch lakes (Scheffer et al. 2001). Therefore, analyz-
ing the factors that influence heat content is critical to under-
standing the ecosystem. Ultimately, it is vital to calculate the
heat content in the most comprehensive way. However, limited
in situ observations do not allow us to estimate the lake heat
content change accurately. That’s partly why LST has been used
more often as an indicator of lake warming in response to cli-
mate change because much more in situ and remotely sensed
data are readily available at the lake surface.

In a changing climate, the direct impact of change in atmo-
spheric heat flux into the lake is often extensively studied and
used to project the lake warming rate. However, the lake mixing
plays an important role in transferring heat mechanically down-
ward. As a result, a thermocline can intensify or diminish in
response to the mixing processes and significantly affect the
heat storage pattern and the lake warming trend (Butcher
et al. 2015). Warming of surface water in the last three decades
as well as changes in the wind pattern have altered the strength
of thermal stratification, which leads to changes in water mix-
ing and water temperature at depth in some large, deep lakes
(Desai et al. 2009; Bennington et al. 2010; Butcher et al. 2015).
Therefore, it is critical to understand the mixing process that
determines the nonlinear relationship between LST, surface heat
fluxes, and total heat content in the context of lake warming.

In this paper, we use a 3D hydrodynamic model to exam-
ine the nonlinear processes of water mixing and ice

formation that cause deviations in lake heat content and fur-
ther variation of LST in the following year. A series of process-
oriented numerical experiments were carried out to identify
and quantify the interactions of the processes and their rela-
tive contribution to the lake heat budget with specific goals
of (1) establishing the heat budget of Lake Superior account-
ing for heat storage change over the entire lake in a 3D
model, (2) understanding changes in the thermocline and
thermal stability of the lake in response to water mixing and
ice formation, (3) examining the response of LST and heat
content to the variability of water mixing, and (4) quantifying
the competitive role of ice albedo feedback and ice insulation
effects.

The remaining sections of this paper are organized as fol-
lows: Model configuration and design of numerical experi-
ments are described in “Model description and design of the
experiments” section. The results and discussion of each
experiment are presented in “Results and discussion” section.
A summary of findings is concluded in “Conclusion” section.

Model description and design of the experiments
Hydrodynamic model

Finite Volume Community Ocean Model (FVCOM) (Chen
et al. 2006) is used in this study, which is an unstructured-
grid, finite-volume, three-dimensional (3D), primitive equa-
tion ocean model. FVCOM’s unstructured-grid feature allows
for flexible geometrical fitting and local topography refine-
ment, which has proven successful for research and applica-
tions to estuaries, coastal oceans, and Lakes (Xue et al. 2009,
2015, 2017; Anderson and Schwab 2013; Beardsley
et al. 2013; Fujisaki-Manome et al. 2017; Safaie et al. 2017).
The horizontal resolution of the model grids varies from �

Fig. 3. Model simulated lake-wide mean LST with different turbulent Prandtl number parameterization for the sensitivity test.
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1 km near the coast to 5 km in the offshore regions of the
lake (Fig. 2). The model is configured with 40 sigma layers to
provide a vertical resolution of < 1 m for nearshore waters
and � 2–5 m in most of the offshore regions of the lake. The
Mellor-Yamada level 2.5 (MY25) turbulence closure model
(Mellor and Yamada 1982) is used for simulating vertical mix-
ing processes, which includes a set of prognostic equations
for turbulent kinetic energy and a length-scale-related param-
eter to calculate eddy viscosities and vertical diffusivities. The
horizontal diffusivity is calculated using the Smagorinsky
numerical formulation (Smagorinsky 1963), determined by
the horizontal velocity shear as well as the model grid
resolution.

Vertical mixing and turbulent Prandtl number
The turbulent Prandtl number (Prt), the ratio of eddy vis-

cosity (KM) and eddy diffusivity (KH), determines the relative
efficiency of the vertical turbulent exchanges of momentum
and heat. In a neutral environment, it is usually found that
the eddy coefficients of heat and momentum are approxi-
mately equivalent (Prt � 1). The presence of stable stratifica-
tion reduces the vertical transport of both heat and
momentum. In general, the eddy diffusivity KH decreases fas-
ter than the eddy viscosity KM with increasing stratification,
thus increasing the Prt in a stable environment.

In the ocean and the large lakes, the Prt can vary to a great
extent. For example, Muench et al. (2009) estimated the Prt
value of 1.5 and 4.2 at two CTD measurement sites in the Ross
Sea continental shelf. Goodman and Levine (2003) showed that
the Prt varies between 2 and 8 in the Narragansett Bay, Rhode
Island using Autonomous Underwater Vehicle (AUV) data. Pre-
vious modeling studies have shown that the Prt variation in a
vertical mixing scheme can significantly affect the simulation
results (Noh et al. 2005; Elliott and Venayagamoorthy 2011).
Dunckley et al. (2012) used Prt = 7 for most of their model
simulations for mixing efficiency in the Gulf of Aqaba. Elliott
and Venayagamoorthy (2011) evaluated four different parame-
terizations of Prt for stably stratified flows based on gradient
Richardson number (Ri). The estimates varies between 2–8
when Ri = 1 and between 0.8–3 when Ri = 0.25 in different
parameterizations. In this paper, we use different Prt for mixing
sensitivity analysis and to examine the impact of mixing-
induced heat transfer on the changes in ice formation, thermal
stability, and heat storage. Specifically, we configure the model
to use MY-2.5 to calculate the KM directly, and KH is calculated

based on a series of prescribed Prt = 1, 3, 5, 7, 10 to manipulate
vertical thermal mixing. The vertical mixing can be associated
with different processes (convection, wind, internal waves,
etc.). It should be noted that it was not our aim to examine
how different processes influence the change in lake mixing.
Instead, our motivation is to understand how the change in
vertical lake mixing would impact the change in lake heat con-
tent and LST. This approach allows us to manipulate and repre-
sent an overall (lumped) change in vertical mixing in the
sensitivity analysis without worrying about the causal physical
processes. Thus, we could examine the corresponding change
in the LST and lake heat content.

Fig. 4. Category 1: The lake-wide mean LST (a), ice cover (b), and ice
thickness (c). Blue and red dotted lines are represented for case 1 (C1-1)
and case 2 (C1-2), respectively. The Great Lakes Surface Environmental
Analysis (GLSEA2) observations (available for LST and ice coverage) are
represented by the black dotted line. The GLSEA2 provides lake-wide
information on LST and ice coverage, which is produced daily at the
NOAA Great Lakes Environmental Research Laboratory (GLERL). The LSTs
are derived from NOAA/AVHRR (Advanced Very High Resolution Radiome-
ter) satellite imagery and updated daily with information from the cloud-
free portions of the satellite imagery. A smoothing algorithm is applied to
the map for days when no imagery available (Schwab et al. 1999). The
addition of ice cover concentration was implemented in early 1999, using
data provided by the National Ice Center (NIC).

Table 1. The configuration of numerical experiments.

Experiment # Vertical Prandtl number Ice albedo

C1-1 1 Dynamics calculated

C1-2 3, 5, 7, 10 Dynamics calculated

C2-1 1 0.7

C2-2 1 0.06
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Lake heat content and water density
With a 3D hydrodynamic model, the total lake heat con-

tent can be estimated by integrating the heat content from all
model cells.

H ¼
Xn

i¼1

ρiCwViTi

where H is lake heat content, Vi and Ti are the volume and
water temperature of different element of water in the lake,
Cw is the specific heat of water, ρi is water density of different
elements of water. The water density (ρi) follows the equation
of state of Chen and Millero (1977), which uses a polynomial
to approximate the equation of state.

Model configuration and design of the experiments
Xue et al. (2015) examined FVCOM modeling performance

in simulating the thermal structure of Lake Superior and ana-
lyzed how specific representations of meteorological forcing
affect the simulation accuracy of the lake thermal structure.
Moreover, taking lake-atmosphere interactions into account,
Xue et al. (2017) developed a two-way coupled 3D lake-ice–
climate modeling system: Great Lakes–Atmosphere Regional

Model (GLARM). The GLARM has significantly improved the
accuracy of the regional climate simulation (Xue et al. 2017).
In this study, we adopted the hydrodynamic model compo-
nent of GLARM as the model performance has been evaluated
and validated (see Xue et al. 2017 for model validation). The
surface meteorological forcing was obtained from GLARM
atmospheric model output.

Despite having experienced warming during the last three
decades, the Great Lakes endured the one of most severe win-
ters in 2013–2014 with the lowest temperature and highest ice
cover in recent history (NOAA National Climatic Data Center
2014, [Clites et al. 2014]), which has been hypothesized as an
indicator of a potential regime shift of the long-term warming
trend (Gronewold et al., 2015). Focusing on this extremely
cold winter allows us to investigate the four primary research
objectives listed in the introduction.

To analyze the relationship between vertical mixing, heat
content, ice albedo, and LST, four process-oriented numerical
experiments in two categories were designed. In category
1, we analyze the impact of the variation of vertical mixing on
the lake conditions of the winter and following spring (cases
C1-1 and C1-2). To evaluate how vertical mixing affects heat
transfer and thermal structure, the initial conditions and
model configuration of those two cases are identical, only the

Fig. 5. The comparison of case C1-1 (left) and C1-2 (right). Upper panel (a, b): time evolution of modeled lake-wide mean temperature profile for lake-
wide mean. Lower panel (c, d): time evolution of modeled lake-wide mean temperature gradient profile.
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vertical mixing is changed through the parameterization of
Prt. In category 2 (cases C2-1 and C2-2), we analyze the impact
of the decreasing ice cover on the accelerated warming of Lake
Superior by examining ice albedo feedback and insulation
effect. Then, we assess the associated change in heat content
and evaluate the role of ice coverage in determining LST for
the following spring.

a. Case C1-1 serves as a control run. In this case, the Prt is set
to the default value of 1, such that the rates of eddy viscos-
ity and eddy diffusivity are equal. The ice albedo is dynami-
cally calculated based on the water temperature and ice
thickness using the default ice module configuration in
FVCOM (Chen et al. 2006). The model simulation starts
from March 1, 2013 with a homogeneous water tempera-
ture of 2�C and for a 9-month dynamic adjustment (model
spin-up). The model simulation continues until 30 June
2014. Simulation results between December 2013–June
2014 are used for analysis.

b. In case C1-2, the model is configured the same as in case
C1-1, but the Prt is set to 3, 5, 7, 10, indicating a smaller
thermal eddy diffusivity compared to momentum eddy vis-
cosity. This case is restarted from 12/07/2013 using C1-1’s
restart file to make the two cases comparable for the simu-
lation period of December 2013–June 2014. As the conclu-
sion drawn from the set of experiments are similar (Fig. 3),
we use the case with Prt = 5 as a representative case for fur-
ther analysis thereafter as most studies provide estimates of
Prt in a range of 1–8.

c. In case C2-1, the model configuration is the same as in case
C1-1, but ice albedo is prescribed to 0.7 as a constant value,
which represents the albedo of bare ice (Zhong et al. 2016).
This case is also restarted from December 2013 using case
C1-1’s restart file.

d. In case C2-2, the model configuration is the same as in case
C1-1, but the ice albedo is prescribed to a constant number
of 0.06 representing the open water albedo value. This case
is also restarted from December 2013 using case C1-1’s
restart file.

A summary of the configuration of these experiments is
presented in Table 1.

Results and discussion
Category 1: Mixing effect
Impact of water mixing on LST and ice

In the experiment category 1 (cases C1-1 and C1-2), the
LST decreases from initial 4�C at the beginning of December
to � 0�C in mid-February during the ice formation phase
(Fig. 4a). Compared to the control run (case C1-1), the LST in
case C1-2 decreases at a higher rate during the fall and the
early winter, the maximum of the mean LST difference
between the two cases can reach up to � 1�C until the mean
LST reaches 0�C in mid-February. The LST starts to increase at

the beginning of April. Similar to the faster decrease in LST in
case C1-2, the LST also shows a higher increase rate through
April–June with an averaged difference of � 2.8�C between
case C1-2 and C1-1. The LST in case C1-2 reaches 12.7�C
while it is 7.46�C in case C1-1 by the end of June.

Corresponding to the decrease in LST, the ice starts to form
in December, and a significant difference in the evolution of
ice coverage starts in January. During this time, the ice cover-
age in case C1-2 increases to 70% while the ice coverage in
case C1-1 remains below 30%. The higher ice coverage in case
C1-2 persistently increases until mid-February with the high-
est coverage of 92%. A more linear increase trend of ice cover-
age is observed in case C1-1 before reaching its peak value of
88% in mid-February. Similarly, the average ice thickness is
0.03–0.13 m greater in case C1-2 than case C1-1 during the
ice formation phase in December–February (Fig. 4c). During
the ice melting phase between mid-March to early June, there
were fewer differences in ice coverage and ice thickness
between the two cases, while there was a general overestima-
tion in simulating the mean ice cover in the melting stage for

Fig. 6. Comparison of heat content in cases C1-1 and C1-2 for the entire
lake (a), upper 5 m (b), and upper 50 m (c).
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Fig. 7. Comparison of cross-sectional temperature in cases C1-1 and C1-2 for the 2014 winter (January–March). See Fig. 2 for the location of the cross-
section. X-axis denotes the length of the cross-section, starting from its southeast end.

Table 2. Mean value of heat flux components during model simulation period (December 2013–June 2014) in different cases.

Experiment #
SW

(W/m2)
DLW

(W/m2)
ULW

(W/m2)
SHF

(W/m2)
LHF

(W/m2)
Net

(W/m2)

C1-1 88.53 147.72 −177.33 −31.53 −22.59 4.85

C1-2 84.85 133.57 −159.24 −20.93 −17.94 20.30

C2-1 84.61 141.77 −170.28 −31.51 −21.94 2.53

C2-2 94.97 159.91 −191.35 −31.18 −24.63 7.72

Fig. 8. Comparison of surface heat flux radiation in cases C1-1 and C1-2, shortwave radiation (SW) (a), downward longwave radiation (DLW) (b), upper
longwave radiation (ULW) (c), sensible heat flux (SHF) (d), latent heat flux (LHF) (e), and net heat flux (f).
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both cases. Again, lake-wide ice coverage in case C1-1 gener-
ally follows the observed trend in both ice formation and ice
melting periods while the ice cover in the ice formation phase
is significantly overestimated in case C1-2. Notice a higher
rate of ice formation is observed in the case C1-2 during the
winter, yet it follows a much faster increase in LSTs in the fol-
lowing 2014 spring as described above. One important out-
come from the experiments is that spring and summer LSTs
can be considerably influenced by the synchronous effect due
to the strength of thermal stratification, in addition to the
thermal inertia effects reported by other studies (Piccolroaz
et al. 2015; Zhong et al. 2016).

Impact of water mixing on heat transfer
During the fall, a decrease in mixing can cause a lower LST

which consequently results in higher ice coverage and thick-
ness during the ice formation season. However, a decrease in
vertical mixing also causes the dramatic increase in LST in the
following spring. This indicates the weakened vertical mixing
alters the stratification pattern and serves as an important role
in limiting energy transfer between the lake’s epilimnion and
hypolimnion.

To provide an alternative comparison, Fig. 5a,b display the
time evolution of lake-mean temperature profile using tem-
perature results of the depth from 5 m to 200 m as a first-
order approximation of the broad lake basin region from
December 2013 to March 2014 in cases C1-1 and C1-2. After
mixing (overturning) typically occurs in autumn, when the
lake is isothermal with the water temperature at � 4�C
throughout the lake in the absence of temperature or density
differences, the inverse stratification starts to develop with
continuous cooling at the surface layer. The inversely strati-
fied water consistently deepens from less than 50 m in early
December to the entire water column at the mid of March
for case C1-1. In case C1-2, the inverse stratification becomes
stronger and develops a shallower stratified layer; the water
stratifies to a depth of 100 m before February and to the
maximum depth of 150 m and remains stable throughout
March. The time evolution of the lake-mean temperature gra-
dients in cases C1-1 and C1-2 are shown in Fig. 5c,d. With-
out the direct impact from surface wind due to the extensive
ice coverage, strong thermal gradients are shown at the near
surface layer. One of the significant differences in the two
cases is the much stronger thermal gradient developed in the
case C1-2 (Fig. 5c,d), with a gradient of > 0.10�C/m formed
near the surface 20 m, while the gradient is much weaker in
case C1-1 with a gradient of � 0.05�C/m around 40 m deep.
Furthermore, the thermal gradient nearly does not exist in
case C1-2 below 100 m, showing a very limited transfer of
heat in the case of weak mixing.

Impact of water mixing on heat content
The total heat budget analysis (Fig. 6) suggests that heat

content trends do not necessarily follow trends in LST.
Although it is a winter case, the situation is dynamically

similar to those described by Livingstone and Lotter (1998)
and Dokulil (2006). They attribute it to the fact that the
downward vertical transport of warm metalimnetic water into
the hypolimnion is less efficient in hot summers than in cold
summers due to the increased thermal stability (Livingstone
and Lotter 1998; George et al. 2007). Similarly, the same phe-
nomenon is also observed in north-central U.S. lakes (Hondzo
and Stefan 1993).

Previously, the lake heat content was calculated using the
1D lake conceptual or thermodynamics model for the whole
lake (Corley 1992; Gronewold et al., 2015). Still, the spatial
temperature varies significantly in Lake Superior due to the
steep bathymetry and large surface size, so that the calculation
may generate unexpected errors. As described in “Lake heat
content and water density” section, we compute heat content
(with a reference temperature of 0�C) from all model cells to
get the lake heat content in each water volume, then integrate
all of the water volumes to estimate the heat content of the
entire lake.

The water is well mixed during the fall seasons with a
net heat loss to the air, therefore both cases show a similar

Fig. 9. Category 2: The lake-wide mean LST (a), ice cover (b), and ice
thickness (c). Blue line and red line represent case C2-1 and case C2-2,
respectively. GLSEA2 observations (available for LST and ice coverage) are
represented by the black dotted line.
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rate of decrease in the total heat content until mid-
December before the water inversely stratified (Fig. 6a). The
fact that the vertical mixing of case C1-1 is stronger than
case C1-2 is apparent during the winter after the water strat-
ification as heat transfer from deeper layer to the surface is
much more effective in case C1-1. As a result, surface water
is warmer (Figs. 4a, 6b) in case C1-1 after mid-December
through January and opposed to ice formation (Fig. 4b,c).
Notice although the cold near-surface water forms at a faster
pace (quicker decrease in LST) in case C1-2 than in case
C1-1 (Figs. 4a, 6b), there is a more significant heat loss in
case C1-1 over the entire lake column or even just over the
upper 50 m than in case C1-2 (Fig. 6a,c) during the fall and
the ice melting period. This suggests that using only LST as
an indicator of warming rate could provide misleading infor-
mation. The trend of decrease in total heat content is weak-
ened in both cases due to the high ice coverage after
February, which prevents the heat loss through its

insulation effect. The total heat remains nearly unchanged
through March when the lake is largely covered by ice. A
reverse trend with similar fashion is observed in the ice
melting season. This again suggests that using only LST as a
warming indicator can be problematic.

The impact of water mixing on the thermal structure is also
evidenced in the cross-sectional winter (January, February,
and March) lake temperature (Fig. 7). In case C1-1, the water
is well-stratified in the offshore water, with warm water of
3.5�C in the deeper layers. In the shallower region, the vertical
mixing process can more easily affect the entire water column,
and the stratification is relatively weak. A similar pattern is
shown in case C1-2 as well, but the deeper water is warmer by
� 0.5�C and surface layer is colder, which results in a much
sharper thermal gradient at � 20–40 m. This is consistent with
the time evolution of the temperature profile (Fig. 5). The
warmer water exists in the deep layer in case C1-2 with a thin
layer of cold water at the surface while the more substantial

Fig. 10. The spatial pattern of mean ice coverage in January, March, and May 2014 for Category 1 case 1 (C1-1) on the left column and case 2 (C1-2)
on the right column.
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Fig. 11. The spatial pattern of mean ice coverage in January, March, and May 2014 for Category 2 case1 (C2-1) on the left column and case2 (C2-2)
on the right column.

Fig. 12. Comparison of cross-sectional temperature in cases C2-1 and C2-2 for the 2014 winter (January–March). See Fig. 2 for the location of the
cross-section. X-axis denotes the length of the cross-section, starting from its southeast end.
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mixing in the case C1-1 results in a colder water in the deep
layer. This is due to the more efficient heat transfer to the
upper layer and eventual loss to the atmosphere. Both ana-
lyses support the conclusion from the comparison of heat
content in the two cases in Fig. 6.

Impact of water mixing on surface heat fluxes
The analysis of surface heat flux shows a connection

between the lake surface condition and the atmospheric con-
dition. The net heat flux, H, is computed as:

H ¼Hsw +HLW +HSHF +HLHF

where Hsw is the net shortwave radiation (SW), HLw is the net
long wave radiative flux, HSHF is the sensible heat flux (SHF),
and HLHF is the latent heat flux (LHF). The mean value of the
heat flux components during the entire model simulation
period (December 2013–June 2014) in different cases is sum-
marized in Table 2. The net heat flux exhibits a seasonal signal
(Fig. 8). The net flux is negative (heat loss from the lake) from
December to February 2014, close to zero during the high ice
coverage and low solar radiation (February–April), and are

positive (heat absorbed by the lake) during the spring. Short-
wave radiation flux, net long wave radiation, sensible heat flux,
and latent heat flux all contribute to the seasonal trend of net
heat flux (Fig. 8), indicating strong feedbacks occur in the
coupled system across the atmosphere–water interface, which
regulate lake temperature and heat fluxes (Xue et al. 2017).

During the ice formation period (December 2013–February
2014), the upward longwave radiation (ULW) (Fig. 8c) with a
mean value of −146.85 W/m2 (negative value indicates a loss
of heat from the lake) in case C1-1 and −106.35 W/m2 in case
C1-2, sensible heat flux (SHF) (Fig. 8d) with a mean value of
−68.47 W/m2 (C1-1) and −46.85 W/m2 (C1-2) and latent heat
flux (LHF) (Fig. 8e) with a mean value of −41.61 W/m2 (C1-1)
and −28.52 W/m2 (C1-2) are all important to surface heat loss.
The differences in the surface heat fluxes are in response to
the noticeable difference of ice coverage in ice formation
period in the two cases. The ice coverage in case C1-2 is nearly
30% higher than case C1-1, the ice coverage prevents the heat
loss from water to atmosphere (ULW, SHF and LHF (Fig. 8c,d,
e), resulting in a difference during this period in ULW of �
−40.5 W/m2, SHF of � −21.6 W/m2, and LHF of −13.1 W/m2

between cases C1-1 and C1-2 (C1-1 minus C1-2) and the heat
absorption (SW + DLW (Fig. 8a,b) of 35.8 W/m2 (C1-1 minus
C1-2) from atmosphere to water. As a result, the net heat flux
to the atmosphere in case C1-2 is lower than that in case C1-1
(−39.4 W/m2) in the ice formation period. This reinforces
more heat losses in case C1-1 with stronger mixing, resulting
in lower ice coverage and lower total heat content.

In the spring (April–June 2014), the shortwave radiation
(SW) (Fig. 8a) (166.1 W/m2 in C1-1 and 167.4 W/m2 in C1-2,
[positive value indicates heat gain to the lake]) increases sig-
nificantly, however, SW are nearly identical in value in cases
C1-1 and C-2. The major difference in the net surface heat
flux arises from the loss of heat through SHF (Fig. 8d) with a
difference of 3.1 W/m2 (C1-1 minus C1-2), LHF (Fig. 8e) with
a difference of 6.1 W/m2 (C1-1 minus C1-2), and ULW with a
difference of 9.6 W/m2 due to a more substantial air–sea tem-
perature difference in case C1-2, as revealed by the LSTs com-
parison. Thus, the lake receives less heat flux in case C1-2
than case C1-1 by 17.23 W/m2.

Category 2: Ice albedo feedback
Ice conditions due to climate variation impact thermal

energy and biogeochemical processes. However, it is still
unclear how does the ice albedo affect the surface heat flux,
ice mass, and thermal structure in Lake Superior. The experi-
ments in category 2 (cases C2-1 and C2-2) are designed to
examine the impact of ice albedo by setting the ice albedo as
0.7 for bare ice (case C2-1) and as 0.06 for the albedo of open
water surface (case C2-2). These are two extreme cases in com-
parison with the control run (C1-1), in which albedo is
dynamically calculated.

Results show that the ice albedo affects LST primarily, but
not significantly, during the ice melting phase. The mean LST

Fig. 13. Comparison of heat content in cases C2-1 and C2-2 for the
entire lake (a), upper 5 m (b), and upper 50 m (c).
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(Fig. 9a) in the two cases shows a nearly identical evolution
from the initial 4�C at the beginning of December to � 0�C at
the mid of March during the ice formation period. The LST
evolves differently beginning in April when LSTs are warmer
in case C2-2 than C2-1 by an average of only 0.25�C until
June. In comparison to experiments in category 1, this sug-
gests the impact of the water mixing effect can potentially be
more significant than the ice albedo effect on LST variability
during a cold year.

In the ice formation period, the ice cover and thickness
show little difference between the two cases (Fig. 9b,c). Dur-
ing maximal ice cover (mid-February–late March), the ice
concentration remains the same but ice thickness shows
increasing difference. In the ice melting phase, both ice cover
and thickness show considerable differences. The ice is much
thicker by an average of 0.2 m in case C2-1 than C2-2. Fur-
thermore, the ice coverage in case C2-1 lasts nearly 5 months
(January–early June) while no ice exists in mid-May in case
C2-2. This is different from the category 1 experiment, where
the change in water mixing primarily affected the ice cover-
age during the ice formation period and has little impact on
the ice melting period. Such a difference can also be viewed

from the heterogeneity of spatial distribution of ice coverage
(Mason et al. 2016) in the two categories, as presented in
Figs. 10, 11. In category 1, at the beginning of the ice forma-
tion period, more ice forms in the western and the central
basins and southern coastal region in case C1-2 compared
with case C1-1 in January 2014, until the lake is nearly fully
covered by ice in March in both cases. During the ice melting
season, ice melts at a similar rate until the end of May in
both cases. In category 2, there is no significant difference
between ice coverage in the two cases from January to March
during the ice formation period. In May, the ice coverage in
case C2-1 is still noticeable, while the ice coverage in case
C2-2 is < 10%.

In contrast to category 1, there is no significant difference
in water stratification profiles in the simulation cases in cate-
gory 2 (Fig. 12). In fact, the stratification pattern from both
category 2 cases during the winter time is very similar to
case C1-1. This indicates the different parameterization
(e.g., constant albedo of bare ice, dynamically calculated
albedo, and water albedo) of ice albedo provides less impact
on the lake thermal stratification in the winter, regardless of
its noticeable effects on ice melting near the surface layer.

Fig. 14. Comparison of surface heat flux radiation in cases C2-1 and C2-2, shortwave radiation (SW) (a), downward longwave radiation (DLW) (b),
upper longwave radiation (ULW) (c), sensible heat flux (SHF) (d), latent heat flux (LHF) (e), and net heat flux (f).
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However, the albedo effect is not strictly limited to the surface
layer (Fig. 13c). The fact that the difference in lake heat con-
tent at the ice melting stage is consistent with model behavior
in ice coverage and thickness and reflects the impact of the
albedo effect on surface heat flux, subsurface temperature,
and, therefore, heat content (Fig. 13).

While category 1 (cases C1-1 and C1-2) shows that mixing
primarily affects the surface heat fluxes during ice formation,
the results in category 2 (cases C2-1 and C2-2) reveals that the
ice albedo effects on surface heat flux primarily occur during
the ice melting period (April–June 2014) as displayed in
Fig. 14. As the ice albedo is parameterized from 0.7 to 0.06, in
the ice melting period, the mean value of SW (Fig. 14a)
increases by 22 W/m2 and the net longwave radiation
(DLW + ULW, Fig. 14b,c) decreases by 5 W/m2. The mean
value of SHF and LHF (Fig. 14d,e) increases by 2.6 W/m2 and
decreases by 4.4 W/m2, respectively. This results in an increase
in the net heat flux (Fig. 14f ) by � 15 W/m2. The results from
this case illustrate the effects of ice albedo on lake surface heat
flux in an extremely cold year during which the total incom-
ing solar radiation is typically weak.

Conclusion
Using the numerical model to manipulate and analyze the

lake lumped vertical mixing and ice albedo allows us to better
understand the processes controlling thermal stratification
and heat budget in a large, deep lake and their impacts on
potential lake response to climate change. Our analysis sug-
gests that even though the heat content is calculated by tem-
perature, the tendency of change in heat content does not
necessarily follow the trend of LST, which is also supported by
other observation-based studies for north-central U.S. lakes
(Hondzo and Stefan 1993). This is because stronger mixing
may slow down the decrease in LST in the cooling season due
to more effective heat supply from deep water to the surface
layer, hence reduce the surface ice formation. As a result, it
also causes more effective heat loss to the atmosphere, thus
reducing the total heat content of the lake. Similarly, in the
warming season, stronger mixing can slow down the increase
in LST by transferring more heat into a deeper layer. There-
fore, one may observe lower LST but high lake heat content in
the spring. As the heat content is much more ecologically sig-
nificant, the results suggest that the lake heat content should
be a more appropriate indicator to infer climate-induced lake
warming.

The presence of ice in the Great Lakes further complicates
how mixing affects the change in the lake thermal structure
and heat content. During the ice formation period, the stron-
ger (weaker) mixing slow down (speed up) the cooling of LST,
which causes the later (earlier) freezing of the lake. Our results
show that water mixing primarily affects ice coverage during
the ice formation period and has little influence on the ice
cover during the ice melting period. This suggests that the

energy for ice melting is primarily driven by solar radiation
rather than the water, which is also evidenced by the surface
heat flux budget.

By comparing model behavior with and without ice-albedo
effect, it shows that the ice albedo in the 2013–2014 winter
does not play a major role in determining the late spring sur-
face warming. Moreover, additional category 2 experiments
(not shown) were run to investigate the milder winter condi-
tions associated with the 1997–1998 El Nino event (Kumar
et al., 2001). Results reveal that the change in surface albedo,
during the winter of 1997–1998, plays a minor role in LST var-
iability, similar to Zhong et al. (2016). These results suggest
the ice albedo effect does not have a significant impact in Lake
Superior in either the cold winter (2013–2014) or the warm
winter (1997–1998). This is because Lake Superior is only cov-
ered by seasonal ice and is always ice-free during the summer-
time. The ice albedo effect is limited in the winter and spring,
therefore is insignificant due to low incident solar irradiance
(e.g., cold winter) and/or low ice coverage (e.g., warm winter).

This situation is different from that in the Arctic Ocean
(AO). The AO is characterized by two major ice classes (peren-
nial and seasonal ice), and the ice albedo feedback can create
major effects throughout the summer. Before the onset of
melt in spring, both seasonal and multiyear ice are covered by
snow, and very little solar energy is absorbed by the Arctic ice-
ocean system (Perovich & Polashenski, 2012). The albedo and
absorbed solar energy begin to diverge in late May throughout
the summer when the incident solar energy is high, and the
change in albedo and ice melt have significant impacts on total
solar energy absorbed in the ice-ocean system (Perovich
et al. 2007a,b). Furthermore, an ongoing shift of ice cover from
perennial ice to seasonal ice (Nghiem et al. 2007; Serreze
et al. 2007) and lengthening of the summer ice melting season
(Markus et al. 2009) allows for more solar energy to be absorbed
in the ice-ocean system during the summer. This leads to more
efficient seasonal ice melt and further ice reduction through
the ice albedo feedback (Perovich & Polashenski, 2012).

This study provides an improved understanding of the
complex physical mechanisms that control the variation of
lake physical characteristics in response to a changing climate.
Our results indicate that climate change will not only affect
the air-lake energy exchange but will further alter lake internal
dynamics, hence the lake’s response to ongoing climate
change may vary with time. The complexity of the dynamics
in large, deep lakes makes it much more challenging and less
reliable to use a traditional regional climate model (RCM) to
predict climate variability for the Great Lakes region. The most
suitable approach is to take a regional earth-system modeling
approach by applying a RCM two-way coupled with a 3D
hydrodynamic model across the Great Lakes region (Xue
et al. 2017).

It should be noted that we used a previously validated
model configuration for this study and it was not our intent
to put major efforts for further improvement of the simulation
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results of the Lake Superior winter condition. Instead, using
these process-oriented numerical experiments, we demon-
strate that model parameterizations can be an effective way of
detecting a subtle pattern of change, and, as a result, quantify
the sensitivity of lake response to a changing climate. Further-
more, these results also suggest that extra attention must be
paid when calibrating and tuning models to decipher the
impacts of climate change and the hydrodynamic response of
the lake in future modeling studies. For example, a change in
mixing parameterization can effectively alter the ice formation
and LST, yet it may result in unintended larger bias in the
total heat content. Overall, more effort should be given
toward model development and parameterization for large
lake systems, such as the Great Lakes, with comprehensive
phonemical and dynamic validation.
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