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A B S T R A C T   

Lake Erie has experienced a re-emergence of cyanobacterial harmful algal blooms (CHABs) since the early 2000s, 
posing significant socioeconomic and ecological consequences that impact drinking water, human health, fish-
eries, tourism, and water quality. As predicting CHAB intensity and spatial distribution is critical to Lake Erie 
ecosystem management, this study focuses on a comprehensive evaluation of Lagrangian and Eulerian transport 
models for Lake Erie CHAB forecasts, including 1) a Lagrangian particle model (LPM), 2) an Eulerian tracer 
model (ETM), and 3) a property-carrying particle model (PCPM) that utilizes the hybrid Eulerian-Lagrangian 
approach. We evaluated the models’ performance against the latest high-resolution satellite product from the 
European Space Agency’s Sentinel-3 OLCI sensor over 24- to 240-h hindcasts for each CHAB occurrence in three 
consecutive CHAB seasons (2017–2019). We examined the relative contributions of horizontal transport, vertical 
turbulent mixing, and algal buoyancy on the CHAB inter- and intra-day variability. In the short-term forecast, we 
emphasize the highly dynamic reaction of currents to weather-scale wind events that are crucial to CHAB 
transport. While statistical skill assessments show that these three transport models attain comparable levels of 
hindcast accuracy, we explore the advantages and disadvantages of each model in the context of general bio-
physical modeling. In particular, the fact that the ETM and PCPM perform as well as or better than the LPM sets 
up a promising path to developing more biological realism in future operational forecast models using Eulerian 
or hybrid approaches.   

1. Introduction 

Lake Erie is the most productive lake among the five Laurentian 
Great Lakes of North America. The re-emergence of cyanobacterial 
harmful algal blooms (CHABs) since the early 2000s has been known as 
one of the most severe environmental problems in the Great Lakes 
(Watson et al., 2016; Liu et al., 2020) as a result of eutrophication 
conditions caused by the excessive nutrient input primarily from agri-
cultural use (Baker et al., 2014). The most severe CHABs originate in the 
shallow western basin of Lake Erie (Fig. 1), associated with nutrient 
loading from the Maumee River in the southwest of the basin (Kane 
et al., 2014). CHABs in Lake Erie are dominated by Microcystis aerugi-
nosa, which produces a family of algal toxins known as microcystins that 
are dangerous to humans and animals. Microcystis aeruginosa is a species 

of freshwater cyanobacteria that can regulate the buoyancy of its col-
onies, with most of the colonies being positively buoyant in Lake Erie 
(Den Uyl et al., 2021). 

CHABs have high socioeconomic and ecological costs in Lake Erie, 
impacting drinking water, human health, fisheries, tourism, and water 
quality. For example, on August 2nd, 2014, the city of Toledo issued a 
“do-not-drink” notice for their drinking water system that affected 0.5 
million people for three days, as a result of contamination of treated 
drinking water with microcystins, associated with a severe CHAB event 
(Stumpf et al., 2016; Steffen et al., 2017). The severe impact caused by 
CHABs promoted the development of an improved short-term forecast 
system for CHAB distribution and transport (Rowe et al., 2016). 

As physical processes play a dominant role in explaining short-term 
bloom variability (Rowe et al., 2016), short-term CHAB forecasts often 
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employ a mass-conserving, advection-diffusion model. Such a model is 
typically forced by a hydrodynamic forecast, with CHAB spatial distri-
bution initialized from satellite remote sensing, to predict the bloom 
location and intensity several days into the future. The partial differ-
ential equations governing algae transport can be solved using a 
Lagrangian approach, an Eulerian approach, or a combination of the two 
(i.e., a hybrid Eulerian-Lagrangian approach). 

In Lake Erie, both the Lagrangian and Eulerian approaches have been 
tested for CHAB hindcast simulations (Wynne et al., 2013; Rowe et al., 
2016; Soontiens et al., 2019). The Lagrangian particle model (LPM) 
describes motion by following individual particle trajectories as the 
particles move through space and time. Each particle represents a 
certain amount of planktonic or chlorophyll mass and is transported by 
three-dimensional velocity components and turbulent diffusivity output 
from a hydrodynamic model. The CHAB condition is therefore expressed 
as an accumulative behavior of phytoplanktonic particles. As each in-
dividual particle can contain a set of attributes (e.g., colony size, 
buoyant velocity) with corresponding physiological traits and behav-
ioral traits, this approach allows for considering the colony variability of 
CHABs (Henrichs et al., 2015). The LPM is limited in its ability to 
represent continuous concentration fields because of the need to count 
particles within a control volume to represent a concentration. Unlike 
the LPM in which mass is transported as discrete particles, the Eulerian 
tracer model (ETM) expresses planktonic biomass or chlorophyll as 
tracer state variables and calculates their concentrations in each model 
grid cell. The Eulerian specification of a field calculates the local rate of 
change at fixed locations (grid cells) determined by advection and tur-
bulent diffusion as well as its biophysical source and sink terms. 

While a few previous studies have assessed short-term hindcast 
simulations of Lake Erie CHABs using Lagrangian or Eulerian ap-
proaches, drawing an insightful conclusion on model performances 
across these approaches remains challenging. This is due to the fact that 
these models were evaluated using different skill measurements, 
different biophysical settings, different forecast periods, and/or 
different model versions. For example, Wynne et al. (2013) focused on a 
two-dimensional (2D) LPM that was initialized with satellite remote 
sensing data and driven by a hydrodynamic model output to hindcast 
the CHABs for 2008–2010. Rowe et al. (2016) took a similar approach 
but applied a 3D LPM for each CHAB event in the 2011 CHAB season for 
up to 240-h hindcasts. By taking into account the vertical distribution 
and buoyancy of Microcystis colonies, the 3D version of the LPM deliv-
ered more skillful hindcasts than its 2D version. More recently, a 3D 
ETM was compared to a 2D LPM (rather than a 3D LPM) that limits 
particles to the lake surface by Soontiens et al. (2019). The comparison 
revealed that the 3D ETM outperformed the 2D LPM by a wide margin. 

However, a 3D ETM and 3D LPM were not directly compared. In contrast 
to the 120-h and 240-h hindcasts from Wynne et al. (2013) and Rowe 
et al. (2016), Soontiens et al. (2019) assessed shorter 48-h hindcasts 
from July 27th to October 8th, 2017. 

Therefore, this study aims for a comprehensive model skill assess-
ment, directly comparing 3D versions of Eulerian and Lagrangian CHAB 
forecast approaches, including assessing a hybrid Eulerian-Lagrangian 
approach (see section 2.4 for the model description). These models 
were run in the latest 3D version at the time of the writing and were 
assessed under identical biophysical conditions and statistical skill 
metrics. For each CHAB occurrence in three consecutive CHAB seasons 
(2017–2019), we evaluated model performance against the latest high- 
resolution satellite product from the European Space Agency’s Sentinel- 
3 OLCI sensor over 24- to 240-h hindcasts. Then, we established a sta-
tistical skill assessment based on all 43 CHAB events to identify each 
model’s strengths and limitations. 

2. Methods 

2.1. Hydrodynamic model 

The Finite Volume Community Ocean Model (FVCOM) is a three- 
dimensional, free-surface, primitive-equation hydrodynamic model 
that solves the integral form of the governing equations on an unstruc-
tured, sigma-coordinate mesh. The advantage of an unstructured grid 
mesh for shoreline fitting and local mesh refinement makes the model 
particularly popular in applications to coastal waters (Xue et al., 2014, 
2020, 2022; Ibrahim et al., 2020; Huang et al., 2021a, b). FVCOM has 
been applied in many coastal systems characterized by geometric com-
plexities and highly variable flow patterns, including various applica-
tions to Lake Erie (Kelley et al., 2018; Rowe et al., 2019; Ye et al., 2020). 

The Lake Erie (LE)-FVCOM has an unstructured grid mesh of 6106 
nodes and 11509 elements, with the water column divided into 20 
uniform-thickness terrain-following sigma layers (Fig. 2a). The mesh has 
a grid resolution of ~2.5 km in the central basin, ~1.5 km in the western 
basin, and ~0.5 km in Maumee Bay and the islands. The open boundary 
conditions include primary inflow from the Detroit River and outflow 
through the Niagara River with specified hourly water levels using the 
NOAA/NOS gauges at Gibraltar (9044020) and Buffalo (9063020). The 
LE-FVCOM is driven by hourly atmospheric forcing from the High- 
Resolution Rapid Refresh (HRRR) model, a cloud-resolving and 
convection-allowing weather forecast and data assimilation system 
running in real-time at a 3-km grid resolution (Benjamin et al., 2016). 

Fig. 1. (a) Bathymetry of the western basin of Lake Erie. (b) A satellite image from the Sentinel-3 OLCI sensor shows an example of a severe CHAB event in the 
western basin of Lake Erie on August 7th, 2019. 

X. Zhou et al.                                                                                                                                                                                                                                    



Environmental Modelling and Software 162 (2023) 105641

3

2.2. Lagrangian particle model (LPM) 

The LPM described by Rowe et al. (2016) is used for the Lake Erie 
Harmful Algal Bloom Forecast system (https://coastalscience.noaa. 
gov/research/stressor-impacts-mitigation/hab-forecasts/lake-erie/, 
accessed August 2nd, 2021), which was originally described by Huret 
et al. (2007) and Churchill et al. (2011). The experimental version was 
sometimes referred to as the CHAB Tracker. The same LPM was used to 
hindcast the probability of microcystin concentration exceeding public 
health advisory guidelines (Liu et al., 2020). In the LPM, CHAB extent 
and intensity (described as cyanobacterial chlorophyll concentration) 
are represented using Lagrangian particles. Each particle represents a 
specific chlorophyll mass (1010 μg/particle) and chlorophyll concentra-
tion in each grid is determined by counting the number of particles in 
each FVCOM tracer control element. The LPM calculates concentration 
using the same horizontal mesh as FVCOM but using constant-thickness 
(1 m) z-layers instead of sigma-layers. Advection of particles is governed 
by the following equation: 

dX(t)
dt

=V(X(t), t) (1)  

where X(t) is the three-dimensional particle position at time t, V(X(t),t) is 
a three-dimensional, time-varying velocity field. Linear interpolation in 
space and time was used to obtain V(X(t),t) from hourly FVCOM output. 
The contribution of advection to the particle position was updated by 
integrating equation (1) using an explicit fourth-order Runge-Kutta 
scheme with a time step of 600 s. 

The LPM uses a random-walk process (Milstein scheme, Gräwe, 
2011; Gräwe et al., 2012; Rowe et al., 2016) to account for vertical 
turbulent mixing and Microcystis buoyant movement (Eq. (2)). This is 
done after the calculation of particles’ 3-D advective movement with 
ambient currents (Eq. (1)). 

z(t+ δt)= z(t)+Wbδt+ 0.5
dK
dZ

(z(t))
[
ΔW2 + δt

]
+ ΔW

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2K(z(t))

√
(2)  

Where z(t) is the vertical position of the particle at time t, δt is the 
vertical random walk time step, Wb is buoyant velocity, K is vertical 
turbulent diffusivity, ΔW is a random variable drawn from a Gaussian 
distribution with zero mean and standard deviation 

̅̅̅̅
δt

√
. The detailed 

description and evaluation of the Milstein scheme are presented in Rowe 
et al. (2016). Note that an option exists in the LPM code to apply a 
spatially-uniform horizontal random-walk diffusion process. However, 
we applied the LPM as described by Rowe et al. (2016) for the CHAB 
forecast, in which horizontal diffusion was turned off. 

An advantage of the Lagrangian approach is that each particle can 
have individual properties, which allows for taking into account varying 
buoyant velocities among Microcystis colonies. Therefore, particles 
(Microcystis colonies) were assigned with buoyant velocities randomly 
sampled from a buoyant velocity distribution estimated from a 
measured Microcystis colony size distribution and reported relationship 
between colony size and buoyant velocity described in Rowe et al. 
(2016). 

Fig. 2. (a) An enlarged view of the western portion of the triangular mesh domain used by the FVCOM, Lagrangian, and Eulerian tracer models. (b) A view of the 
PCPM grid with 1 km resolution. 
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2.3. Eulerian tracer model (ETM) 

The ETM resolves advective transport and turbulent mixing of tracer 
concentration (C) in the following advection-diffusion equation:  

where u, v, and w are the x, y, and z components of the water velocity, kh 
is the vertical eddy diffusivity calculated using the Mellor and Yamada 
level 2.5 (MY-2.5) turbulent closure scheme (Mellor and Yamada, 1982), 
Am is the horizontal diffusion coefficient calculated with the Smagor-
insky eddy parameterization method (Smagorinsky, 1963), wb is the 
buoyant velocity of Microcystis colonies, and Csource and Csink represent 
the sources and sinks of C associated with biological processes. To 
represent the physical transport-only model and quantify the impact of 
physical processes on the bloom variability, the source and sink terms 
were turned off in this study. 

In contrast to the LPM, where each particle can have an individual 
buoyant velocity randomly sampled from an estimated buoyant velocity 
distribution of Microcystis colonies, the Eulerian approach represents 
characteristics of the population mean instead of describing intrapopu-
lation variability. Hence, a representative buoyant velocity of 9×
10− 5m/s was used in ETM, which represented 70% of measured buoyant 
velocities based on the frequency distribution histogram (Fig. S1). This 
provided the best model performance in the sensitivity analysis of 
buoyant velocities (supplementary material). 

2.4. Property-carrying particle model (PCPM) 

ETM is designed to solve the physical and biological processes in one 
equation (Eq. (3)). This may become inefficient when running ensemble 
models with the need to test different configurations for biological 
components. This is because, in the ETM framework, any changes, 
regardless of physical or biological components, would require a time 
integration of the entire Eq. (3), even if the changes in biological terms 
do not impact physical processes (e.g., water movement and mixing). 
This creates an opportunity to save computing load by using an alter-
native approach to calculate advection and diffusion. 

The particles in LPM represent chlorophyll mass, while the particles 
in Property-carrying particle model (PCPM) describe flow conditions 
and record associated environmental properties along the particle tra-
jectories due to the water movement, namely “properties-carrying par-
ticles.” These trajectories and recorded physical properties become the 
linking mechanism between the hydrodynamic and biological processes 
in the next step. It should be pointed out that the particles in LPM only 
appear in areas where algae are present because the particles represent 
chlorophyll mass. In contrast, the particles in PCPM cover the entire 
model domain to represent the water mass movement and associated 
environmental variables. In the region without algae, the recorded value 
of algae concentration is simply zero. Therefore, it is necessary to 
continue releasing particles according to the flow rates of the Detroit 
River in the PCPM to track the water entering the western basin of Lake 
Erie from the river. On the contrary, particles should not be released 
from the river in LPM as it is assumed the river carried no algae into the 
lake. 

Second, the PCPM employs its own grid cell system with a rectilinear 
grid mesh (Fig. 2b) to calculate local average values of the particle-based 
environmental properties within each PCPM grid cell. Then, the cell- 
based state variables within a given PCPM grid cell are predicted in 
response to various biophysical processes (if they are included) by using 

the stored physical conditions and the initial conditions of the state 
variables (which is the information brought by particles from ambient 
locations in the previous step). This step is an Eulerian approach to 
simulating the biophysical process. After that, the cell-based state var-

iables are reassigned to the particles within each PCPM grid cell, and 
these particles carry the updated properties of state variables to the next 
location. Note that no calculations are needed to calculate a particle’s 
next-step destination, as particle trajectories have already been 
computed at the beginning. Such a cycle repeats at each time step. 

PCPM differs from LPM as tracer particles in PCPM characterize 3-D 
fields of concentration encountered by the particles instead of repre-
senting chlorophyll mass associated with Microcystis colonies. As such, 
the PCPM separates the hydrodynamic transport and the remaining 
biophysical processes. Hence, the PCPM combines the pre-computed 
particle trajectories (Lagrangian approach) with local biophysical (in 
this case, vertical mixing and buoyancy) processes (Eulerian approach) 
to predict the spatial distribution and temporal variation of CHABs. In 
this PCPM implementation, 1.4 million initial particles were randomly 
distributed throughout the western basin of Lake Erie, within a total 
water volume of 38.6 km3. The PCPM grid has a resolution of 1 km × 1 
km with 20 uniform sigma layers in vertical, each PCPM cell contains 15 
particles on average. If no particles are present in a particular cell, PCPM 
uses the values from the previous time step. Additional particles are 
continuously introduced according to the flow rates of the Detroit River 
and the Maumee River to keep the same particle density as in the initial 
distribution (Xue et al., 2017; 2018). 

In this study, the PCPM first uses pre-recorded physical properties 
carried by particles to determine the PCPM grid cell-based average 
chlorophyll concentration (Chlgrid,n) in a PCPM grid cell n as follows: 

Chlgrid,n =
∑L

j=1
Chlparticle,mj

/
L (4)  

Where the summation includes all L particles (m1, m2, … mL) currently 
within cell n. L is the total number of particles within that cell n and 
Chlparticle,mj is the concentration of chlorophyll associated with particle 
mj. Then, the PCPM cell-based average chlorophyll concentration is 
updated through local processes (buoyant velocity and vertical mixing) 
in the local water column. The updated chlorophyll concentration is 
then redistributed from cells to particles (m1, m2, … mL) to carry for-
ward. The development, validation, and application of the PCPM are 
documented in Xue et al. (2017, 2018). Similar to the ETM, the PCPM 
does not resolve intrapopulation variability among Microcystis colonies. 
Thus, the PCPM used the same buoyant velocity as in the ETM. 

2.5. Model initialization and experiment design 

To provide model initial conditions, we calculated cyanobacterial 
chlorophyll concentration based on the satellite-derived Cyanobacteria 
Index (CI), one of the European Space Agency’s Sentinel-3 OLCI sensor 
products (https://www.ncei.noaa.gov/access/metadata/landing-page/ 
bin/iso?id=gov.noaa.nodc:NOS-HABOFS-LakeErie, accessed Nov 8th, 
2022). The CI has been used for detecting surface algal blooms and for 
quantitative mapping of cyanobacterial chlorophyll concentrations in 
coastal oceans and inland waters (Binding et al., 2019). Chlorophyll was 
converted from the CI by an empirical relationship (Rowe et al., 2016; 
Tomlinson et al., 2016) as follows: 

∂C
∂t + u

∂C
∂x + v

∂C
∂y +w

∂C
∂z −

∂
∂z

(

kh
∂C
∂z

)

−
∂
∂x

(

Am
∂C
∂x

)

−
∂
∂y

(

Am
∂C
∂y

)

+wb
∂C
∂z =Csource − Csink (3)   
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Chl= 12570 × CI + 10 (5) 

We evaluated daily satellite images of CI for the three CHAB seasons 
in 2017–2019 and identified 134 images of CHAB occurrence to 
initialize the transport models, based on cloud cover conditions (Table 1; 
see below for details). Each 10-day model simulation was initialized 
from each image by assigning satellite-derived chlorophyll concentra-
tion to the transport model grids as the initial surface field using the 
nearest-neighbor interpolation. The missing data for those model grids 
under cloud cover were filled by model-predicted results on that day 
from the simulation initialized from the earlier image. Chlorophyll 
concentration can be directly used as the initial surface field for the ETM 
and PCPM. For the LPM, the chlorophyll concentration must be con-
verted to an amount of Lagrangian particles by specifying a chlorophyll 
mass per particle and placing the corresponding number of particles in 
each model grid to represent the initial chlorophyll concentration. The 
initial vertical distribution of chlorophyll was determined by applying 
the surface chlorophyll concentration to the surface mixed layer (SML) 
depth, as described in Rowe et al. (2016). 

The satellite images used in the model simulations were divided into 
four categories.  

• No CHAB event  
• CHAB event with clear sky  
• CHAB event with low cloud coverage  
• CHAB event with high cloud coverage 

The “No CHAB event” category is defined as the case with no more 
than 5% of the no-cloud region having CHAB in the western basin of 
Lake Erie. The high and low cloud coverage categories are distinguished 
by whether more than 50% of the western basin is covered by clouds 
when there is a CHAB event. Finally, the clear sky category is those 
satellite images with no cloud cover that clearly show CHAB events in 
the western basin of Lake Erie. Model results of three transport models 
were evaluated against observations for the clear sky category and the 
low cloud coverage category. 

To characterize the competition between vertical mixing, vertical 
advection, and buoyant velocity of Microcystis colonies, we used the 
dimensionless Péclet number (Pe), which is defined as the ratio of the 
advective transport rate due to the algal buoyant velocity and water 
vertical advection to the turbulent transport rate due to vertical eddy 
diffusivity: 

Pe=
(Wb + ww) × h

k
(6)  

Where Wb is the buoyant velocity (m/s), h is the water column depth (m), 
ww is the vertical advection velocity (m/s), and k is the column mean 
eddy diffusivity (m2/s). The Péclet number in this study varied by orders 
of magnitude (10− 3 ∼ 103). Pe < 1 (100) indicates that vertical turbu-
lent mixing dominates over buoyant velocity and vertical water advec-
tion, and vice versa. 

2.6. Skill assessments 

Following the methods of Rowe et al. (2016) and Soontiens et al. 
(2019), we evaluated three transport models using the skill metrics of 
binary categorical variables and the mean absolute error (MAE) for a 
statistical assessment of model performance based on all 43 bloom 
events in three CHAB seasons. The binary categorical variables test 
whether models can correctly simulate the CHAB occurrence at each 
grid cell. Comparisons at each model grid cell were divided into four 
categories depending on whether or not a CHAB event is presented in a 
given grid. A CHAB event occurs on a grid cell if chlorophyll concen-
tration is greater than 12 ug/L, which is a level-2 alert, defined by the 
World Health Organization, for short-term responses to toxic cyano-
bacteria in drinking water supplies, and a level-1 alert for monitoring 
and managing cyanobacteria in water bodies used for recreation (Chorus 
and Welker, 2021). 

Four categories were defined: a (true positive): the model correctly 
predicts an observed CHAB event; b (false positive): the model predicts 
an unobserved event; c (false negative): the model fails to predict an 
observed event; d (true negative): both model and observation show no 
CHAB event. Two metrics, including Frequency Bias (FB) and Pierce 
Skill Score (PSS), were used to evaluate the model performance. 

The FB is calculated as 

FB=
a+ b
a+ c

(7) 

It gives the ratio of the number of grid cells over which the model 
predicts a CHAB event to the number of grid cells over which a CHAB 
event has actually been observed. FB > 1 indicates an overestimation of 
the CHAB area (represented by the total number of grids where a CHAB 
event occurs) from the model, and vice versa. 

The PSS is defined as 

PSS=
a

a+ c
−

b
b+ d

(8) 

PSS compares the “true positive” and “false alarm” rates. PSS =
0 suggests the model predictions have equivalent rates of true positives 
and false alarms, which is the expectation of a random forecast. 
Therefore, a positive PSS score indicates that the model outperforms a 
random forecast, and a negative PSS score indicates that the model 
performs worse than a random forecast. 

MAE measures the absolute difference between modeled chlorophyll 
concentration and observation. 

MAE=
1
n
∑n

i=1
|mi − oi| (9)  

Where n is the total number of grid cells. mi and oi are the modeled and 
observed chlorophyll concentration in each grid cell, respectively. 

In addition, we evaluated the model performance against a persis-
tence forecast, which assumes an observed CHAB pattern remains un-
changed over time. The persistence forecast represents the best available 
information to forecast users in the absence of applicable models. By 
comparing the difference in PSS and MAE between transport models and 
against persistence forecasts, we characterized the quality of the addi-
tional information provided by the process-based transport models. 

3. Results 

3.1. Inter-day CHAB transport and variability 

To examine the impacts of wind-driven transport, turbulent mixing, 
and buoyancy effect on CHAB surface variability, we presented detailed 
bloom evolution during two major CHAB events in this section (addi-
tional simulation results for low- and medium-size CHAB events are also 
provided in supplementary materials in Figs. S4–S9). A statistical 

Table 1 
Description of satellite images for the 2017, 2018, and 2019 CHAB seasons.    

Used for model evaluations Total 

No 
CHAB 
event 

CHAB event 
with high cloud 
coverage 

CHAB event 
with low cloud 
coverage 

CHAB event 
with clear 
sky 

2017 13 0 5 15 33 
2018 26 15 1 2 44 
2019 11 26 9 11 57 
Total 50 41 15 28 134  
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assessment of model performance based on all 43 bloom events in three 
CHAB seasons is presented in Section 3.3. The most significant CHAB 
event occurred on September 22nd-23rd, 2017. On the 15th, an intense 
bloom originated from Maumee Bay and extended throughout the center 
of the western basin, as seen in the satellite image (Fig. 3a1). In the next 
eight days, the bloom was transported northeastward and reached the 
northern shore of western Lake Erie (Fig. 3a2, a3). During this period, 
the surface bloom significantly intensified. In the following days, the 
surface chlorophyll concentration decreased rapidly from September 
26th through October 1st (Fig. 3a4, a5). Correspondingly, we conducted 
a continuous 15-day model simulation from September 15th to October 
1st. The simulations were initialized from the satellite image on 
September 15th, and then the three models ran continuously until 
October 1st, so that the other satellite images represent independent 
observations that could be used for model assessment. All three trans-
port models successfully captured the northeastward transport pattern 
of CHAB, as well as the bloom intensification during the first 8 days 
(Fig. 3a3-d3). All three transport models also successfully reproduced 
the following diminishing surface bloom with remnants near the 
northern shore on October 1st (Fig. 3b4-d4, b5-d5). 

The fact that the models performed well in simulating not only how 

the bloom moved, but also its intensification and reduction, reinforces 
the predominant role of highly variable meteorological and hydrody-
namic processes in short-term bloom evolution. Southeasterly wind 
prevailed during September 16th–23rd (Fig. 4a). It generated north-
westward currents in the shallow water along the south coast that pri-
marily followed the wind direction (Fig. 4b). While in the deeper region 
of the western basin, the Ekman flow (surface currents turn right with 
respect to the wind forcing due to the Coriolis force) and the constraint 
of the shoreline boundary led to the northeastward transport (Fig. 4b). 
As a result, the bloom originated from Maumee Bay was transported to 
the northern shore of the western basin during this period. The inten-
sification of the bloom on September 23rd was associated with the 
reduced vertical turbulent mixing, as reflected in the increase in the 
Péclet number. From September 16th to 23rd, the Péclet number in the 
center of western Lake Erie increased by more than an order of magni-
tude (Fig. 4b, d) due to the decreased wind speed from 4 to 6 m/s to 2–4 
m/s (Fig. 4a, c). As a result, the algal buoyancy and water vertical 
advection gradually dominated over the vertical mixing, leading to 
upward vertical transport of algae from deeper water to the surface that 
intensified the surface bloom. The disappearance of blooms after 
September 23rd was primarily controlled by the enhanced vertical 

Fig. 3. Comparisons between simulations from three transport models (LPM, ETM, PCPM) and satellite-derived surface cyanobacterial chlorophyll concentration. 
Comparisons were made on the dates when satellite images were available during the event, including September 15th (a1, b1, c1, d1, initial fields), 22nd (a2, b2, c2, 
d2), 23rd (a3, b3, c3, d3), 26th (a4, b4, c4, d4), October 1st (a5, b5, c5, d5). The simulations were initialized from the satellite image a1 (September 15th) to create 
initial fields (b1, c1, d1), and then the models ran continuously until October 1st, so that the other satellite images represent independent observations that could be 
used for model assessment. The black triangle refers to the location for the time series plot of the Péclet number in Fig. 4(g) and the transect plot for chlorophyll 
concentration in Fig. 5. 
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mixing due to the strong wind (Fig. 4e). The Péclet number decreased by 
three orders of magnitude throughout the western basin of Lake Erie 
during September 23rd-28th (Fig. 4d–f), reflecting the dominance of 
vertical mixing over buoyant velocity and water vertical advection, 
which mixed the algae throughout the water column and resulted in 
reduced surface chlorophyll concentration (Fig. 5a-d). The time evolu-
tion of bloom intensity was explained by the evolution of the Péclet 
number (Fig. 4g). 

Furthermore, we separated the impact of algae buoyant velocity and 
water vertical advection on Péclet number at all grid points across the 
entire model domain. The results (Fig. S2) show that 95% of the vertical 
water velocities are below the buoyant velocity (9 × 10− 5 m/s) used by 

the ETM and PCPM, and more importantly, 60% of the vertical water 
velocities are at least 10 times smaller than the buoyant velocity. 
Therefore, the Péclet number is primarily determined by the competi-
tion of the buoyant velocity and vertical turbulent mixing. As a result, 
we simplified the Péclet number (Pes) by excluding the impact of water 
vertical advection: 

Pes =
Wb × h

k
(10) 

A comparison of Pe and Pes shows a very similar pattern (Fig. S3), 
which confirms that the buoyant velocity has the dominant influence 
over the vertical advection in Péclet number calculation. This is due to 

Fig. 4. Meteorological and hydrodynamic conditions 
during the CHAB event in 2017. Wind rose plots on 
September 16th, 23rd, and 28th, respectively (a, c, e). 
The wind rose plots were generated from the spatially 
averaged wind fields over the western basin that 
drove the hydrodynamic modeling. Modeled surface 
currents are overlaid with the Péclet number map on 
16th, 23rd, and 28th, respectively (b, d, f). Time se-
ries plot of the Péclet number (g), at the location 
indicated as the black triangle in Fig. 3.   
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the fact that upward or downward water velocity, as resolved on a ~km- 
scale horizontal grid, has a much smaller magnitude compared to the 
buoyant velocity of Microcystis colonies (Fig. S1). In numerical fluid 
dynamic models, the sub-grid scale vertical velocities are represented by 
the turbulent diffusivity, which drives vertical mixing. Therefore, the 
Péclet number primarily represents buoyant velocity competing against 
turbulent mixing, and provides a useful indicator of conditions under 
which buoyant cyanobacterial colonies are likely to concentrate near the 
surface, versus being mixed through the water column. 

Similarly, in 2019, a severe CHAB event occurred from July 29th to 
August 5th (Fig. 6). On July 29th, the bloom with a surface chlorophyll 
concentration of 40–60 μg/L occurred near the west shore (Fig. 6a1). 
Surface chlorophyll concentration increased to more than 100 μg/ L on 
July 30th. The bloom moved eastward (Fig. 6a2) with two branches, one 
branch extending to the center of the western basin and the other one 
moving along the south coast. On August 2nd, the central branch of the 
bloom moved further eastward, leaving a “CHAB finger” pointing to the 
northern shore (Fig. 6a3). The finger extended to the north shoreline of 
the western basin, forming a semi-circular-shaped front when it met 
with the water mass from the Detroit River outflow from August 2nd to 

5th (Fig. 6a4). 
All three transport models captured the northeastward propagation 

of the bloom and the semi-circular-shaped front around the Detroit River 
mouth. The three transport models also successfully reproduced the 
increase in surface chlorophyll concentration on July 30th, followed by 
a decrease of surface chlorophyll concentration on August 2nd and a re- 
intensification of chlorophyll concentration on August 5th. This, again, 
highlights the significant impact of buoyancy and vertical mixing on 
surface CHAB intensity. 

The formation of the “CHAB finger” and the semi-circular-shaped 
front resulted from wind-driven surface currents and the outflow from 
the Detroit River. A southwesterly wind of 6–8 m/s on July 29th (at the 
beginning of the event) (Fig. 7a) and southeasterly wind of 2–4 m/s 
(Fig. 7c) on August 5th (at the end of the event) favored the north-
eastward flow carrying high concentration of chlorophyll (Fig. 7b, d). 
Meanwhile, the water mass from the Detroit River flowed southward in 
the northern part of the basin with a counter-clockwise turn to the 
northeast to exit the western basin. Correspondingly, the chlorophyll 
front was formed between the two water masses. 

The modeled vertical distribution of chlorophyll varied along with 

Fig. 5. Comparison of daily average chlorophyll concentration simulated by LPM, ETM, and PCPM in the west-east transect on a) September 23rd, b) September 
26th, c) September 27th, d) October 1st across the black triangle location shown in Fig. 3. 
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the changing Péclet number (Figs. 7 and 8). Offshore, where surface 
chlorophyll concentration varied significantly, the chlorophyll concen-
tration of 50 μg/L was uniformly distributed from the surface to the SML 
depth of 5 m (Fig. 8a) on July 29th. The rapidly elevated Péclet number 
on July 30th resulted in the first intensification of surface bloom 
(Figs. 7e and 6a2-d2). On August 2nd, buoyancy-driven surface bloom 
intensification extended to the adjacent area (83.1 ◦W to 83.3 ◦W) with 
horizontal transport and diffusion (Fig. 8b). A continued increase in 
Péclet number due to reduced wind and mixing since August 2nd led to a 
further decrease in SML depth and intensification of the surface bloom, 
with the chlorophyll concentration exceeding 100 μg/ L (Fig. 8c and d). 
The three transport models simulated the vertical structure of chloro-
phyll similarly, with some noticeable differences between the LPM and 
the other two models. This is mainly because the LPM used a distribution 
of buoyant velocity while the ETM and PCPM applied a uniform buoyant 
velocity, as discussed in Section 2.2-2.4. 

3.2. Diel variability of CHAB concentration 

Model results also revealed significant intraday variation of surface 
chlorophyll concentration in a diel cycle. Fig. 9 presents the variation on 
August 5th, 2019 as a typical example. At 4:00 a.m., surface chlorophyll 
concentration was around 40–60 μg/L in the region (Fig. 9a1, b1, c1). At 
1:00 p.m., the surface chlorophyll concentration increased significantly 
to 100 μg/L with the CHAB area nearly unchanged (Fig. 9a2, b2, c2). At 
8:00 p.m., surface chlorophyll concentration decreased again to 30–40 
μg/L (Fig. 9a3, b3, c3). Such a cycle was clearly shown in the deeper 
places (water depth >4 m) where water is more influenced by convec-
tive cooling. Surface chlorophyll concentration was low during the 
nighttime due to surface cooling-induced mixing and increased 

significantly when water was re-stratified (mixing weakened) during the 
daytime. Correspondingly, Fig. 10 shows that the Péclet number was 
greater than one from 4:00 a.m. to 12:00 p.m., leading to algae floating 
upward from the deep layer to the surface and reaching its peak surface 
concentration at noon. The Péclet number became less than one after-
ward, consistent with the time when surface chlorophyll concentration 
started to decrease. All three transport models simulated the diel cycle, 
although PCPM and ETM showed a higher peak value and reached peak 
value slightly earlier than the LPM due to their different buoyancy 
configurations. 

3.3. Model skill statistics 

The two bloom events we presented in detail in previous sections are 
aimed at identifying the impact of physical processes on CHAB evolu-
tion. In this section, we focus on a statistical assessment of model per-
formance based on all 43 bloom events in the three CHAB seasons 
(2017–2019) to evaluate the models’ overall performance. We evaluated 
model performance from 24- to 240-h hindcasts for each CHAB event in 
the three consecutive CHAB seasons and established model skill statis-
tics to identify each model’s strengths and limitations. The model skill 
assessments were grouped into two-day intervals based on model fore-
cast length (Table 2). There were 103 model-satellite matchups for each 
simulation, with more than 10 for each group. 

All three transport models had positive PSS scores, indicating that 
they have greater skill in capturing the occurrence of CHAB/non-CHAB 
events than a random forecast (Fig. 11). All three models’ PSS scores 
decreased from (~0.75–0.6) as the number of simulation days increased, 
which shows that the models’ prediction accuracy decreased over longer 
prediction periods, as expected. The FB values for all three transport 

Fig. 6. Comparisons between simulations from three transport models (LPM, ETM, PCPM) and satellite-derived surface cyanobacterial chlorophyll concentration. 
Comparisons were made on the dates when satellite images were available during the event, including July 29th (a1, b1, c1, d1, initial fields), 30th (a2, b2, c2, d2), 
August 2nd (a3, b3, c3, d3), 5th (a4, b4, c4, d4). The simulations were initialized from the satellite image a1 (July 29th) to create initial fields (b1, c1, d1), and then 
the models ran continuously until August 5th, so that the other satellite images represent independent observations that could be used for model assessment. The 
black triangle refers to the location for the time series plot of the Péclet number in Fig. 7(e) and the transect plot for chlorophyll concentration in Fig. 8. 
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models were less than 1.0 (~0.7–0.9), indicating that all the models 
underestimated the CHAB area. Among these three models, the ETM had 
the best performance based on PSS-FB metrics. 

In addition, Fig. 12 evaluates the transport models’ performance 
against a persistence forecast. As persistence forecast assumes a steady 
CHAB pattern over time, it performed well in 1–2 day prediction, 
capturing both CHAB/non-CHAB events and chlorophyll concentra-
tions. This is because the CHABs in Lake Erie have several persistent 
features, which contribute to the skill of the persistence forecast. For 
example, CHABs often persist in the southern and western nearshore 
zones due to relatively weak currents and long residence time. Also, the 
bloom is rarely present in the Detroit River plume or beyond 82.7◦W, as 
indicated by 13 years of Lake Erie CHAB spatial patterns compiled by 
Wynne and Stumpf (2015). The three transport models outperformed 
the persistence forecast in the following days, demonstrating the cu-
mulative impacts of transport and mixing on bloom spatiotemporal 
distribution. 

Among the three transport models, the ETM performs the best in 
terms of the PSS and FB metrics. With respect to the MAE metric, the 
ETM and PCPM show similar performances, which are slightly better 
than the performance of the LPM. Considering the differences in PSS and 
MAE scores among the three transport models are insignificant, it sug-
gests that all three transport models have a similar level of skill and the 
ETM performs the best in the overall evaluation. Note that we also tested 
model sensitivity to buoyant velocities of Microcystis colonies, including 
the second experiment with a high buoyancy velocity of 18× 10− 5 m/ s 

(representing Microcystis colonies with large diameters) and the third 
experiment excluding buoyant velocities (supplementary materials). 
The buoyant velocity of 9 × 10− 5 m/s used here in the ETM and PCPM 
represented 70% of measured buoyant velocities based on the frequency 
distribution histogram of the measured buoyant velocities (Fig. S1) and 
provided the best model performance in our sensitivity analysis 
(Fig. S4). 

4. Discussion and conclusion 

4.1. Importance of physical processes on CHAB forecast 

For forecasting the short-term evolution of CHAB events, this study 
reveals the importance of highly dynamic flow patterns and associated 
transport and mixing in response to weather-scale wind events. While in 
the context of long-term mean circulation, Beletsky et al. (2013) sum-
marized that the western basin circulation is driven by the Detroit River 
inflow moving eastward out of the basin, with wind modulating the 
circulation to a certain extent. However, short-term responses of flow 
patterns to weather-scale winds have a significant impact on CHAB 
forecasts. As CHABs are persistently located in Maumee Bay (Wynne and 
Stumpf 2015), wind-driven currents play the most critical role in the 
bloom movement to locations that are less commonly affected, which is 
the ultimate goal of what the transport models are intended to forecast. 
Our results show that, depending on wind direction, wind events can 
cause nearshore currents that transport CHABs eastward from Maumee 

Fig. 7. Meteorological and hydrodynamic conditions 
during the CHAB event in 2019. Wind rose plots on 
July 29th and August 5th, respectively (a, c). The 
wind rose plots were generated from the spatially 
averaged wind fields over the western basin that 
drove the hydrodynamic modeling. Modeled surface 
currents are overlaid with the Péclet number map on 
July 29th and August 5th, respectively (b, d). Time 
series plot of the Péclet number (e), at the location 
indicated as the black triangle in Fig. 6.   
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Bay toward the Toledo water intake, northward toward the Monroe 
water intake, and long-distance northeastward transport to the Cana-
dian shore (Figs. 3 and 6). Focusing on how the flow patterns quickly 
respond to wind events, our results provide additional insights in com-
parison to the previous understanding of the Detroit River as the main 
driver of currents in the western basin. 

This study also demonstrated that the competition between vertical 
mixing and buoyant velocity (with a much less significant impact from 
vertical advection) is a key factor in determining the surface intensity 
and vertical distribution of CHABs. When the colony’s buoyancy is 
strong enough to keep Microcystis concentrated within the SML, the 
chlorophyll concentration changes with SML depth (Rowe et al., 2016). 
Therefore, strong turbulent mixing keeps the algae distributed homo-
geneously within deeper SML, while surface algae can quickly intensify 
when vertical mixing is reduced (Figs. 5 and 8). Such a competition 
between vertical mixing and buoyant velocity is well expressed by the 
(simplified) Péclet number defined in this study (Figs. 10 and 11). The 
Péclet number serves as a relatively simple index that can predict the 
surface intensity and vertical distribution of CHAB. Previous studies also 
support these results. Wynne et al. (2010) show that the CHABs 

increased in both area and intensity for wind stress <0.05 Pa and 
decreased for wind stress >0.1 Pa, and Fang et al. (2019) found that the 
average surface chlorophyll decreased by about 6.2% with a wind speed 
increase by 1 m/s. In our study, buoyant velocity was held constant as a 
simplifying assumption, so variation in Péclet number was largely 
driven by varying turbulent diffusivity. However, other studies have 
shown that Microcystis colony buoyant velocity can vary across lake 
systems (Den Uyl et al., 2021) and due to diel variation in cell carbo-
hydrate content (Medrano et al., 2013). Thus, by accounting for the 
main drivers of Microcystis vertical distribution, buoyancy and turbulent 
diffusivity, Péclet number regarded as a more general indicator of 
Microcystis vertical distribution across systems than, for example the 
effects of wind speed, which would depend on local variables such as the 
exposure of a lake to wind and the buoyancy of the local Microcystis 
population. 

4.2. Strengths and limitations of the transport models 

As predicting CHAB intensity and spatial distribution is critical to 
Lake Erie ecosystem management, this study presents a comprehensive 

Fig. 8. Comparison of daily average chlorophyll concentration simulated by LPM, ETM, and PCPM in the west-east transect on a) July 29th, b) August 2nd, c) August 
3rd, d) August 6th across the black triangle location shown in Fig. 6. 

X. Zhou et al.                                                                                                                                                                                                                                    



Environmental Modelling and Software 162 (2023) 105641

12

evaluation of Eulerian, Lagrangian, and hybrid transport modeling ap-
proaches for Lake Erie CHAB hindcasts. To ensure an objective assess-
ment, these models were run in the most recent 3-D version and 
evaluated under identical biophysical conditions and with the same 
statistical skill measures. The skill assessments show that three transport 
models could achieve similar levels of prediction accuracy based on 
transport-only simulations in this study. 

However, in the context of general biophysical modeling, each of 
these three models has its own advantages in different situations. While 
a known benefit of Lagrangian models is that they may be less suscep-
tible to numerical diffusion than Eulerian models, recent studies show 
that when modeling CHAB with a high level of spatial detail, the spatial 
mismatch between modeled and observed fields can cause a significant 

Fig. 9. Intraday variability of cyanobacterial chlorophyll concentration in response to diel heating and cooling of the surface, simulated by three transport models on 
August 5th, 2019. The black triangle represents the area of a high chlorophyll concentration, where the variation of surface chlorophyll concentration and Péclet 
number is shown in Fig. 10. 

Fig. 10. Variation of simulated surface chlorophyll concentration (a) and Péclet number (b) at the black triangle marked in Fig. 9.  

Table 2 
Summary of available satellite images used for skill assessment, grouped into 
two-day intervals.  

Forecast days # satellite images available for model evaluation 

1–2 15 
3–4 31 
5–6 12 
7–8 32 
9–10 13  

Total: 103  
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penalty in skill, and smoothing the spatial fields can improve skill (Gill 
et al., 2017). Thus, smoother CHAB distributions in the Eulerian models 
(e.g., ETM and PCPM, which resolve spatiotemporally varying hori-
zontal eddy diffusivity) may have contributed to greater skill. Incorpo-
rating horizontal diffusion using the random walk method in LPM has 
the potential to improve the model skill; however, we elected to 
implement the LPM in this study as it had previously been applied in the 
Lake Erie HAB forecast. Even so, spatially-varying horizontal diffusivity 
is more difficult to apply in an LPM due to potential numerical artifacts 
(Ross and Sharples, 2004), and ETM can represent more realistic 
spatially-varying horizontal diffusivity (Smagorinsky, 1963). 

ETM can better represent continuous fields of concentration than 
LPM. Nearly all lower-food web biological models used in the Great 
Lakes represent nutrients, phytoplankton, zooplankton, and detritus 
compartments as continuous fields and describe the biological process in 
the water column in the Eulerian framework. Therefore, the lower-food 
web biological models can be directly coupled to ETM due to their 
compatibility (Xue et al., 2014; Rowe et al., 2017). On the other hand, 
LPM can represent properties that vary over a population, such as 
buoyant velocity, and track exposure to environmental conditions over 
time, which is essential for individual-based models of organisms (Li 
et al., 2014). PCPM, to some extent, possesses the advantages of ETM but 
with greater computational efficiency. PCPM is 15 times faster than ETM 
using the same CPUs. PCPM is also 30% faster than LPM. This can be a 

critical factor depending on how much computing power is available 
and how many simulation scenarios an application requires. 

Finally, although the present model configurations focus on simu-
lating the impacts of physical processes on CHAB forecast, it is critical to 
include biological processes to resolve the source and sink processes of 
algae biomass in long-term biophysical simulations. The fact that ETM 
and PCPM performed as well as or better than the LPM sets up an 
alternative path to developing more biological realism in future models 
using Eulerian or hybrid approaches. 
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