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ABSTRACT: As Earth’s largest collection of freshwater, the Laurentian Great Lakes have enormous ecological and so-

cioeconomic value. Their basin has become a regional hotspot of climatic and limnological change, potentially threatening

its vital natural resources. Consequentially, there is a need to assess the current state of climate models regarding their

performance across the Great Lakes region and develop the next generation of high-resolution regional climate models to

address complex limnological processes and lake–atmosphere interactions. In response to this need, the current paper

focuses on the generation and analysis of a 20-member ensemble of 3-km National Aeronautics and Space Administration

(NASA)-UnifiedWeather Research and Forecasting (NU-WRF) simulations for the 2014/15 cold season. The study aims to

identify the model’s strengths and weaknesses; optimal configuration for the region; and the impacts of different physics

parameterizations, coupling to a 1D lake model, time-variant lake-surface temperatures, and spectral nudging. Several key

biases are identified in the cold-season simulations for the Great Lakes region, including an atmospheric cold bias that is

amplified by coupling to a 1D lake model but diminished by applying the Community AtmosphereModel radiation scheme

and Morrison microphysics scheme; an excess precipitation bias; anomalously early initiation of fall lake turnover and

subsequent cold lake bias; excessive and overly persistent lake ice cover; and insufficient evaporation over Lakes Superior

and Huron. The research team is currently addressing these key limitations by coupling NU-WRF to a 3D lake model in

support of the next generation of regional climate models for the critical Great Lakes Basin.

SIGNIFICANCESTATEMENT: Climate change poses a serious threat to the vital natural resources of the Laurentian

Great Lakes region. Complex lake–atmosphere interactions and limnological processes are a challenge for regional

climate models. To address the threat of climate change, there is a clear need to further evaluate and develop modeling

tools for the Great Lakes Basin. Here, we evaluate the regional performance of the National Aeronautics and Space

Administration’s regional climate model at high spatial resolution in support of ongoing efforts to develop the next

generation modeling tool for the Great Lakes region.
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1. Introduction

The Laurentian Great Lakes are the Earth’s largest collec-

tion of freshwater and an invaluable resource to society and

wildlife (Botts and Krushelnicki 1988). The Great Lakes

megaregion is home to over 55 million people (Todorovich

2009). The lakes critically support the United States’ and

Canadian economies through impacts on shipping, drinking

water, power production, manufacturing, fishing, and recrea-

tion (Vaccaro and Read 2011). The basin contains a rich di-

versity of fish, animals, and plants (Crossman and Cudmore

1998) and ecologically valuable wetlands.

The Great Lakes exert a prominent effect on regional cli-

mate due to their large thermal inertia, variability as amoisture

source to the atmosphere, and contrasts in moisture, heat,

friction, and radiation compared to adjacent land (Changnon

and Jones 1972; Scott and Huff 1997; Chuang and Sousounis

2003; Notaro et al. 2013a). Heat andmoisture fluxes destabilize

and moisten the boundary layer during autumn–winter (Bates

et al. 1993; Blanken et al. 2011). The lakes’ relative warmth and

resulting enhanced low-level convergence make the basin a

preferred region of wintertime cyclogenesis (Petterssen and

Calabrese 1959; Colucci 1976; Eichenlaub 1979). Lake-induced

precipitation peaks during September–March when cloud cover

and precipitation are enhanced downwind of the lakes (Niziol

et al. 1995; Scott and Huff 1996; Kristovich and Laird 1998).

Overlake turbulent fluxes and lake-effect precipitation are

dampened bymid- to late winter (February–March) as ice cover

becomes extensive (Niziol et al. 1995; Brown andDuguay 2010).

The Great Lakes region has experienced dramatic climatic

and limnologic changes (Kling et al. 2003; Wuebbles and
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Hayhoe 2004; Wuebbles et al. 2010; Sharma et al. 2018),

including a regime shift in lake-surface temperature (LST) and

ice cover (Van Cleave et al. 2014). During 1900–2010, annual

air temperatures rose by 0.888C in the Midwest United States

(Kunkel et al. 2013; Schoof 2013; Pryor et al. 2014; Zobel et al.

2017, 2018). Due to mutual surface–atmosphere warming

(Manabe and Wetherald 1967) and resulting earlier lake

stratification, Lake Superior’s surface water temperatures in-

creased by 2.58C during July–September of 1979–2006, ex-

ceeding the regional atmospheric warming rate (Austin and

Colman 2007; Zhong et al. 2016; Ye et al. 2019). The lakes’ ice

cover declined by 71% during 1973–2010 due to the afore-

mentioned mutual surface–atmosphere warming (Wang et al.

2012; Mason et al. 2016). Rising lake temperatures, ice cover

reductions, and increased frequency of intense cyclones

supported a long-term positive trend in lake-effect snowfall

(Burnett et al. 2003; Ellis and Johnson 2004; Kunkel et al.

2009), which locally reversed over portions of the Great Lakes

Basin in recent decades (Bard and Kristovich 2012; Hartnett

et al. 2014; Suriano and Leathers 2017; Clark et al. 2020).

Heavy precipitation events have become more frequent

(Kunkel et al. 2003, 2012; Easterling et al. 2000; Winkler et al.

2012), with an invigorated hydrologic cycle generating extreme

lake level variations (Gronewold et al. 2013).

Given the importance of lake–atmosphere interactions and

pronounced climate change in theGreat Lakes Basin, there is a

need to generate, evaluate, and improve climate modeling for

the region. Large lakes and their regional climate influence are

poorly resolved in coarse global climate models (Mallard et al.

2014, 2015; Briley et al. 2017). TheGreat Lakes’ representation

across the Coupled Model Intercomparison Project global

climate models varies broadly among land, wet soil, ocean, or

inland lake grid cells, with the most advanced representation in

the Coupled Model Intercomparison Project global climate

models based on 1D lake models (none are coupled to 3D lake

models) with inappropriate assumptions for deep lakes

(Roeckner et al. 2003; Briley et al. 2017). One rudimentary

regional climate modeling approach consists of extracting sea

surface temperatures from the initial and lateral boundary

conditions datasets over the Atlantic Ocean, Pacific Ocean, or

Hudson Bay and applying those oceanic sea surface tempera-

ture values as LST boundary conditions for the Great Lakes

(Mallard et al. 2015; Spero et al. 2016; Sharma et al. 2018). Such

erroneous LSTs, retrieved from oceans rather than lakes, can

negatively impact simulated pressure and air temperature re-

gionwide (Spero et al. 2016). Alternatively, regional climate

models that apply historical, remotely sensed or reanalysis-

based LSTs, rather than a coupled lake model, neglect hy-

drodynamic feedbacks and are impractical tools for developing

climate projections (Sharma et al. 2018).

Regional climate models have been employed in an array of

Great Lakes studies. Zhong et al. (2012) demonstrated the

ability of select regional climate models to capture the lakes’

impacts on regional climate and outperform global climate

models. The Regional Climate Model version 4, coupled to a

1D lake model, was applied to examine the lakes’ influence on

atmospheric circulation, stability, moisture, and temperature;

highlight model skill in capturing variability and trends in air

temperature, ice cover, and snowfall; elucidate themechanisms

behind recent lake warming; and formulate winter severity

projections (Notaro et al. 2013a,b, 2014, 2015, 2016; Zhong et al.

2016). Applying the ‘‘Providing Regional Climates for Impacts

Studies’’ regional climate model, Zhang et al. (2020) projected

that wintertime precipitation in the Great Lakes Basin would

increase during this century. The Weather Research and

Forecasting (WRF; Skamarock et al. 2008) Model is a com-

monly used regional climate model for the Great Lakes Basin.

According to Shi et al. (2010), the nested WRF Model with

1-km grid spacing accurately simulated snowfall and cloud

patterns from Canadian snowstorms. Wright et al. (2013)

revealed a close association between Great Lakes’ ice cover

distribution and resulting snowfall pattern in WRF and con-

cluded that coarse models cannot capture local water–ice–

atmosphere interactions that regulate snowband intensity and

distribution. Insua-Costa and Miguez-Macho (2018) estimated

that, during lake-effect snowstorms in November 2014, 30%–

50% of WRF-simulated precipitation downwind of the lakes

originated from lake evaporation, similar to those estimated

from observed water and ice fluxes (e.g., Kristovich and

Braham 1998) Applying nested WRF with 3-km grid spacing,

Shi and Xue (2019) determined that resolving LST spatial

variations enhances surface wind convergence, vertical mo-

tion, and lake-effect snowfall on the lee sides of the Great

Lakes. The WRF-based findings of Sharma et al. (2019) in-

cluded enhanced skill due to spectral nudging (Rockel et al.

2008; Wang and Kotamarthi 2013), better performance during

winter than summer, and successfully simulated lake-effect

precipitation at both 12- and 4-km grid spacing. Complex lake–

atmosphere interactions and lake-effect snowfall morphology

require high-resolution modeling (Notaro et al. 2013a,b,

2015; Wright et al. 2013; Briley et al. 2017; Xiao et al. 2018; Shi

and Xue 2019). Future climate projections for the Great Lakes

Basin were developed by Gula and Peltier (2012) and Peltier

et al. (2018) using WRF either uncoupled or coupled to the

Freshwater Lake Model (Mironov 2008). Peltier et al. (2018)

identified a wintertime cold bias in WRF coupled to the

Freshwater Lake Model across the Great Lakes Basin.

More advanced regional climate models typically represent

the Great Lakes using 1D lake models, which incorporate

coupled lake–atmosphere interactions and can generally cap-

ture the broad spatiotemporal patterns of LSTs and ice cover

(Gula and Peltier 2012; Notaro et al. 2013b), but are charac-

terized by serious limitations. These shortcomings for large

lakes include the lack of dynamic lake circulation, explicit

horizontal mixing, or ice motion; an oversimplified stratifica-

tion process; assumed instantaneousmixing of instabilities; and

deficient treatment of eddy diffusivity (Martynov et al. 2010;

Stepanenko et al. 2010; Bennington et al. 2014; Mallard et al.

2014, 2015; Gu et al. 2015; Sharma et al. 2018). Such regional

climate models, coupled to a 1D lake model, generate exces-

sive ice cover due to the absence of horizontal mixing and ice

movement (Bennington et al. 2010; Notaro et al. 2013b; Xiao

et al. 2016). One-dimensional lake models commonly produce

an anomalously early stratification and positive bias in sum-

mertime LST (Bennington et al. 2014). Charusombat et al.

(2018) revealed that WRF coupled to a 1D lake model,
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adapted from the Community Land Model version 4.5 (Subin

et al. 2012; Oleson et al. 2013), produces excessive sensible and

latent heat fluxes, compared to Great Lakes Evaporation

Network measurements, that can be largely resolved by mod-

ifying the roughness length scales. One common approach to

reduce vertical temperature profile errors in 1D lake models is

to artificially enhance the vertical eddy diffusivity of deep lakes

to imitate the neglected dynamic circulation and vertical mix-

ing processes (Subin et al. 2012; Bennington et al. 2014;

Lofgren 2014; Gu et al. 2015; Mallard et al. 2015). Nonetheless,

1D lake models remain incapable of representing key dynamic

and thermodynamic processes of deep lakes (Xiao et al. 2016;

Xue et al. 2017). Continued progress is needed to interactively

couple high-resolution regional climate models to 3D lake

models in order to resolve shear instabilities, mixing episodes,

Ekman suction, upwelling, downwelling, coastal currents and

jets, seiches, and ice motion (Martynov et al. 2010; Bennington

et al. 2010, 2014; Beletsky et al. 2012; Fujisaki et al. 2013), and

minimize LST and ice cover biases (Notaro et al. 2013b; Xue

et al. 2015, 2017; Sharma et al. 2018; Ye et al. 2019).

The authors developed an advanced Great Lakes Basin

modeling tool, consisting of the NASA-Unified Weather

Research and Forecasting (NU-WRF; Peters-Lidard et al.

2015) model, nested to 3-km grid spacing, interactively coupled

to the Finite Volume Community Ocean Model (Chen et al.

2003) to represent 3D lake hydrodynamics. This tool will

benefit subsequent assessments of historical and future climatic

and limnological changes, representing variability and change

in lake temperature, ice cover, and lake circulation, along with

providing a high-resolution, convection-permitting depiction

of precipitation extremes. In support of this development

process, the current paper explores the cold season perfor-

mance of the current NU-WRF version across the Great Lakes

Basin, including the identification of regionally optimal

schemes and the impacts of 1D lake model coupling, spectral

nudging, and the choice of cumulus parameterization, micro-

physics, longwave and shortwave radiation, and planetary

boundary layer and surface layer schemes. The authors present

data and methods in section 2, results in section 3, and dis-

cussion and conclusions in section 4.

2. Data and methodology

a. Model description and experimental design

NU-WRF is a state-of-the-art observation-driven integrated

modeling system that represents aerosol, cloud, precipitation,

and land processes at satellite-resolved, convection-permitting

scales. It was developed based on the National Center for

Atmospheric Research Advanced Research WRF Model

coupled with chemistry (WRF-Chem; Grell et al. 2005;

Skamarock et al. 2008), with enhanced physics coupling and

optimal use of NASA’s satellite products. TheWRF dynamical

core is coupled to the Goddard Space Flight Center Land

Information System (Kumar et al. 2006; Peters-Lidard et al.

2007, 2015) and Goddard Chemistry Aerosol Radiation and

Transport model (Chin et al. 2000), while incorporating mul-

tiple NASA-based microphysics and radiation packages (Wu

et al. 2016). NU-WRF simulations here apply the Noah Land

Surface Model, which prognostically computes soil moisture

and temperature, permits fractional snow cover, and incorpo-

rates freeze–thaw soil physics (Mitchell 2001).

The current NU-WRF version permits two crude treatments

of large lakes. Either LSTs can be provided by skin surface

temperatures from the boundary condition dataset, without

including a lake model or two-way lake–atmosphere interac-

tions, or the atmosphere can be two-way coupled to the 1D

Lake, Ice, Snow, and Sediment Simulator (Subin et al. 2012)

from the Community Land Model version 4.5 (Oleson et al.

2013) with modifications by Gu et al. (2015). This 1D mass and

energy balance scheme applies 0–5 snow layers on top of lake

ice, 10 water layers (5-cm depth for top layer), and 10 soil layers

at the lake’s bottom. This lake model initially generated rea-

sonable LSTs for shallow Lake Erie but vast biases for deep

Lake Superior due to an underestimated vertical heat transfer.

However, by amplifying the eddy diffusion parameter, Gu et al.

(2015) reduced these LST biases in an artificialmanner that does

not directly address the key 3D processes in deep lakes.

The performance of NU-WRF and optimal model configu-

ration are explored for the Great Lakes region during a select

cold season with active lake-effect snowfall. Twenty simula-

tions (Table 1) are generated, including eight primary runs

(‘‘Nud’’: with spectral nudging and temporally invariant

November LSTs; ‘‘NoNud’’: without nudging and with tem-

porally invariant LSTs that are fixed at the initial warm

November state; ‘‘NudVary’’: with nudging and temporally

varying LSTs; ‘‘NoNudVary’’: without nudging and with tem-

porally varying LSTs; ‘‘Nud1D’’: with 1D lake model and

uniform lake depths; ‘‘Nud1Ddep’’: with 1D lake model and

spatially varying lake depths; ‘‘MorrNoL’’: without 1D lake

model and withMorrison combination; ‘‘MorrL’’: with 1D lake

model and Morrison combination) for November 2014–March

2015 and 12 supplemental runs for only February 2015 (when

temperature biases are most pronounced) to limit computa-

tional costs. The vertical resolution is assigned to 61 levels. The

one-way nested configuration consists of an outer domain with

15-km grid spacing and inner domain with 3-km grid spacing

(Fig. 1). Initial and lateral boundary conditions are provided by

either the Global Data Assimilation System 0-h analysis or

European Centre for Medium-Range Weather Forecasts in-

terim reanalysis. Lake treatment includes LSTs provided as

boundary conditions based on Global Data Assimilation

System skin surface temperatures; or generated by application

of a 1D lake model either with uniform (50m for all lakes)

or spatially varying lake depths, the latter based on the

Kourzeneva (2010) dataset. Some simulations include spectral

nudging to the large-scale atmospheric fields (wind compo-

nents, air temperature, and geopotential height above the

planetary boundary layer and specific humidity at all levels) to

an approximate 600-km wavelength, which is the wavelength

specified in numerous prior studies (Ferraro et al. 2017; Iguchi

et al. 2017; Lee et al. 2017; Loikith et al. 2018).

Applied cumulus parameterization options for the outer

domain include the Kain–Fritsch (Kain and Fritsch 1990; Kain

2004) and modified Tiedtke (Tiedtke 1989; Zhang et al. 2011)

schemes, with resolved, unparameterized convection in the

inner domain. The thermal roughness length in the bulk
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transfer equations is either assigned to its default value or

determined through a vegetation-dependent scheme (Chen

and Zhang 2009; Weston et al. 2019). Applied microphysics

options include the Goddard three-class ice scheme (Tao et al.

1989) and a couple of six-class, double-moment schemes,

namely, the Thompson et al. (2008) graupel scheme and

Morrison et al. (2009) scheme. Utilized longwave radiation

schemes include the Rapid Radiative TransferModel (RRTM;

Mlawer et al. 1997), Rapid Radiative Transfer Model for

General Circulation Models (RRTMG; Barker et al. 2007;

Pincus et al. 2003), and Goddard scheme (Chou and Suarez

1999; Chou et al. 2001). The applied shortwave radiation

schemes include the RRTMG (Iacono et al. 2008), Goddard

(Chou and Suarez 1999; Chou et al. 2001), and Community

Atmosphere Model (CAM; Collins et al. 2004) schemes.

Applied planetary boundary layer schemes include the Yonsei

University (Hong et al. 2006, 2010), Mellor–Yamada–

Nakanishi–Niino Level 2.5 (MYNN2.5; Nakanishi and Niino

2006, 2009), and Mellor–Yamada–Janjić (MYJ; Mellor and

Yamada 1982; Janjić 1990, 1994, 2001) schemes, and applied

surface layer schemes include the Mesoscale Model Version

Five (MM5) (Zhang and Anthes 1982), Mellor–Yamada–

Nakanishi–Niino (MYNN; Nakanish 2001), Nakanishi and

Niino, Monin–Obukhov–Janjić, and revised MM5 Monin–

Obukhov (Jiménez et al. 2012) schemes. The UA_PHYS run

activates improved physics of snowpack–vegetation canopy in-

teractions, which increases sensible heat fluxes and decreases

momentum roughness length over snowpack (Wang et al. 2010).

‘‘Morrison combination’’ refers to the set of schemes applied

in MorrL (with the 1D lake model) andMorrNoL (without the

lake model), including Morrison microphysics, RRTM long-

wave radiation physics, CAM shortwave radiation physics,

MYNN2.5 planetary boundary layer physics, and MYNN

surface layer schemes. The improved simulations of air tem-

perature and surface insolation due to the Morrison combi-

nation are primarily due to the Community Atmosphere

Model’s shortwave radiation scheme. The selection of the

Community Atmosphere Model’s shortwave radiation scheme

is based on six test runs for December 2016–February 2017

varying, one by one, the microphysics scheme, shortwave ra-

diation scheme, and boundary layer scheme (not shown). The

Morrison combination is essentially the WRF configuration

determined by Mooney et al. (2013) to produce the best sim-

ulated wintertime temperature simulation over Europe, who

found that winter air temperatures are highly sensitive to the

choice of radiation physics. Comparison of experiments re-

veals the regional impacts of spectral nudging, seasonally

variant LSTs, 1D lake model coupling, spatially varying ba-

thymetry, and Morrison combination. The effects of spectral

nudging are isolated by [(Nud 2 NoNud) 1 (Nud_Vary 2
NoNud_Vary)]/2, of seasonally variant LSTs by [(Nud_Vary 2
Nud)1 (NoNud_Vary2NoNud)]/2, of lake model coupling

by [(Nud1D 2 Nud_Vary) 1 (Nud1Ddep 2 Nud_Vary) 1
(MorrL 2 MorrNoL)]/3, of spatially varying bathymetry

by (Nud1Ddep 2 Nud1D), and of Morrison combination by

[(MorrNoL 2 Nud_Vary) 1 (MorrL 2 Nud1Ddep)]/2.

b. Datasets

Three daily gridded observational datasets are used to

evaluate model performance. First, the 1/88 North American

Land Data Assimilation System version 2 (NLDAS-2) dataset

(Xia et al. 2012) provides precipitation, surface pressure, 2-m

specific humidity, 2-m air temperature, and 10-m zonal and

meridional wind as primary forcings and surface albedo, sen-

sible and latent heat fluxes, surface incident shortwave radia-

tion, and liquid-equivalent snow depth as NLDAS-2 output

from three land surface models (averaged here across models).

The NLDAS-2 precipitation is derived through the temporal

disaggregation of the gauge-only Climate Prediction Center

analysis of daily precipitation (Higgins et al. 1996; Chen et al.

2008), performed on the NLDAS-2 grid with orographic adjust-

ment; over Canada, only reanalysis precipitation is used due to

poor gauge coverage, with the different data source applications

across the United States–Canada border negatively impacting

the performance of NLDAS-2 precipitation (Xu et al. 2019).

NLDAS-2 surface downward shortwave radiation is computed

by debiasing reanalysis with Geostationary Operational

Environmental Satellite–based fields (Pinker et al. 2003).

Second, both directly measured and inferred variables are

retrieved from the Oak Ridge National Laboratory’s 1-km

Daymet product (Thornton et al. 1997, 2014). These include

FIG. 1. Elevation maps (m) for the (a) outer domain with 15-km

grid spacing and (b) inner domain with 3-km grid spacing.
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precipitation and 2-m air temperature, as directly measured

variables, and liquid-equivalent snow depth (based on a

snow model) and 2-m vapor pressure (based on minimum

temperature-dewpoint temperature relationships), as inferred

variables. The relatively basic geographically weighted re-

gression approach applied by Daymet, for interpolation from

station observations to a gridded product, only accounts for

elevation (Oyler et al. 2014).

Third, the 1-km National Weather Service’s National

Operational Hydrologic Remote Sensing Center Snow Data

Assimilation System (SNODAS) dataset (Barrett 2003; Clow

et al. 2012), which integrates data from satellite, airborne

platforms, ground stations, and a snow model (Carroll et al.

2001), contains physical snow depth, liquid-equivalent snow-

fall, and liquid-equivalent snow depth. Several past studies

(Hay et al. 2006; Azar et al. 2008; Clow et al. 2012) argued that

SNODAS gridded snow water equivalent data had not been

sufficiently evaluated, as SNODAS assimilates nearly all

available ground-based and airborne observations of snow

water equivalent, leaving insufficient independent data for

evaluation.

While gridded observational datasets are valuable for

model evaluation, they can exhibit intrinsic regional biases.

Behnke et al. (2016) assessed multiple gridded observational

datasets, compared to United States’ station observations,

and concluded that Daymet has the smallest temperature bias,

NLDAS-2 has a warm bias and the greatest temperature

bias, and Daymet has a wet bias and the greatest precipitation

bias. These results justify the choice of Daymet for air tem-

perature and NLDAS-2 for precipitation in the current paper’s

figures. King et al. (2020) identified a 50% positive bias in

SNODAS snow water equivalent across Ontario compared to

in situ observations, consistent with Zahmatkesh et al. (2019).

Based on our comparison of snow water equivalent data from

Daymet, NLDAS2, and SNODAS against these in situ observa-

tions, the current paper’s figures focus on evaluating NU-WRF’s

snowpack against the more consistent NLDAS2 dataset.

Lakewide daily mean LST, derived from Advanced Very

High Resolution Radiometer composite imagery (during

cloud-free periods) but without inclusion of any buoy obser-

vations, is retrieved from the CoastWatch’s Great Lakes

Surface Environmental Analysis LST Dataset version 2, de-

veloped by NOAA’s Great Lakes Environmental Research

Laboratory (Schwab et al. 1992). Li et al. (2001) evaluated this

CoastWatch LST satellite product against Great Lakes’ buoy

observations during May, July, and September of 1997 and

concluded that mean differences were 0.268C during the day

and 1.528C during the night. A year-round assessment by

Schwab et al. (1999) found that the CoastWatch LSTs and buoy

LSTs exhibited a mean difference of less than 0.58C for all

buoys and a root-mean-square difference (RMSD) ranging

from 1.108 to 1.768C. Persistent periods of cloud cover during

the autumn–winter can restrict radiometer inputs to the Great

Lakes Surface Environmental Analysis LST Dataset, degrad-

ing its reliability (Niziol 2003). New temperature imagery is not

available over portions of the Great Lakes during the winter to

early spring for as long as 30–50 days due to persistent cloud

cover (Schwab et al. 1999). The lack of thermal imagery during

spring and autumn is often most concerning, as lake temper-

atures often change rapidly during those seasons. As shown in

Table S1, a comparison of theGreat Lakes Surface Environmental

Analysis Dataset with LST data at nine Great Lakes’ buoys

from the National Data Buoy Center during November 2014–

March 2015 indicates the CoastWatch product has a mean bias

of10.938CandRMSDof 1.638C. The comparison is only based

on an average of 37 days of data during the 2014/15 cold season

as buoys are not deployed during much of the icy winter con-

ditions. These findings are consistent with Niziol (2003), who

concluded that during autumn, when lake temperatures are

typically declining, the inability to update satellite-derived

data due to persistent cloud cover can lead to a warm bias in

the CoastWatch product.

Based on ice products from the United States National Ice

Center andCanadian Ice Service, theGreatLakesEnvironmental

Research Laboratory–Great Lakes Ice Cover Dataset contains

lakewide daily mean ice cover (Assel et al. 2002, 2013; Assel

2005; Wang et al. 2012), although with the noted limitation

that the dataset’s spatial resolution, projection, and sampling

frequency changed over time (Yang et al. 2020). Overlake

measurements of air temperature, wind speed, downward

shortwave radiation, sensible heat flux, and latent heat flux are

obtained through the Great Lakes Evaporation Network

(Blanken et al. 2011; Spence et al. 2011, 2013, 2019; Lenters

et al. 2013) at Granite Island and Stannard Rock on Lake

Superior, Spectacle Reef on LakeHuron,White Shoal on Lake

Michigan, and Long Point on Lake Erie. The network’s level 1

eddy covariance data have only undergone basic corrections,

including removing sensible and latent heat spikes and a visual

level of quality control. Moukomla and Blanken (2017) gen-

erated an independent dataset of Great Lakes’ turbulent fluxes

using the bulk aerodynamic approach, based on remote sens-

ing, direct measurements, and reanalysis, and compared these

modeled fluxes against GLEN observations, with the conclu-

sion that they were in ‘‘good statistical agreement.’’ The

RMSD between the datasets at White Shoal, Stannard Rock,

and Spectacle Reef lighthouses was 5.68, 6.93, and 4.67Wm22,

respectively, for latent heat fluxes and 6.97, 4.39, and

4.90Wm22, respectively, for sensible heat fluxes.

3. Results

a. February 2015 performance among 20 simulations

To summarize NU-WRF’s performance and identify the

most successful model configuration for the Great Lakes re-

gion, four statistics are computed across the inner domain,

namely, mean bias, RMSD, temporal correlation, and spatial

correlation, based on daily 2-m air temperature, precipitation,

snow water equivalent in the snowpack, surface incident

shortwave radiation, and 2-m specific humidity for February

2015 among 20 simulations (Figs. 2 and 3).

1) AIR TEMPERATURE

A persistent atmospheric cold bias is evident in 18 runs and

only absent in simulations with artificially constant November

LSTs (Nud and NoNud, which do not permit the model to

evolve beyond the initial warm November LST state) as
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unnaturally warm lakes maintain higher surrounding air tem-

peratures (Fig. 2a). This is evidence of the lakes’ basinwide

influence on cold season climate. Among those 18 runs, the 2-m

air temperature bias during February 2015 is least in MorrNoL

(22.098C) and MorrL (22.978C), indicative of the Morrison

combination dampening the regional cold bias, and greatest in

RAGODD (25.688C), highlighting regional limitations of

Goddard’s radiation physics schemes. Lake model activation,

FIG. 2. (left) Bias and (right) root-mean-square difference in (a),(b) 2-m air temperature (8C), (c),(d) precipitation
(mmday21), (e),(f) snowpack snowwater equivalent (mm), (g),(h) downward surface shortwave radiation (Wm22), and

(i),(j) 2-m specific humidity (g kg21) across the Great Lakes region, over land, among 20 NU-WRF simulations for

February 2015, compared toDaymet in (a) and (b) andNLDAS-2 in (c)–(j). Panels (g) and (h) closely match each other

in magnitude, as all of the runs have a positive bias in solar radiation, which explains most of the RMSD.

SEPTEMBER 2021 NOTARO ET AL . 2429

Brought to you by MIT LIBRARIES | Unauthenticated | Downloaded 09/22/21 12:14 PM UTC



while critical for representing lake–atmosphere interactions, en-

hances the cold bias (e.g., by 0.888C from MorrNoL to MorrL).

Based onRMSD,February air temperatures are best capturedby

Nud (1.608C) and runs using the Morrison combination, namely,

MorrNoL (2.388C), andMorrL (3.298C) (Fig. 2b). The seemingly

good performance of Nud is deceiving, as unrealistically imposed

November LSTs counter the intrinsic regional cold bias found in

most of the simulations.

FIG. 3. (left) Temporal and (right) spatial correlations in (a),(b) 2-m air temperature, (c),(d) precipitation, (e),(f)

snowpack snow water equivalent, (g),(h) downward surface shortwave radiation, and (i),(j) 2-m specific humidity

across the Great Lakes region, over land, among 20 NUWRF simulations for February 2015, compared to Daymet

in (a) and (b) andNLDAS-2 in (c)–(j). Correlation coefficients are saved to the hundredth decimal point, explaining

why some runs appear to share the same exact correlation values.
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The effects of individual model configuration choices on

area-averaged 2-m air temperature over land in the inner do-

main during February 2015 are presented in Fig. S1 in the

online supplemental material. For example, in order to isolate

the typical magnitude of the effect of choice in microphysics

scheme on simulated air temperatures, the Nud1Ddep,

MP3ICE, and MP_MORR runs, which apply the Thompson,

Goddard, and Morrison schemes, respectively, are compared

against each other. Simulated February air temperatures in the

inner domain are most sensitive to 1D lake model activation,

spectral nudging, and choice of radiation and microphysics

schemes. This further supports the conclusion that the benefits

of the Morrison combination to air temperatures are primarily

linked to the choice of radiation physics.

2) PRECIPITATION AND SNOWPACK

NU-WRF generates excessive overland precipitation during

February 2015 among all simulations. This bias is vast for runs

forced with November LSTs (e.g., Nud: 10.95mmday21), as

erroneously warm lakes support excessive lake-effect precipi-

tation. The bias is moderate for runs with temporally varying

LSTs, ranging from 10.21mmday21 in ERAINT (using the

European Centre for Medium-Range Weather Forecasts in-

terim reanalysis for boundary conditions) and10.35mmday21

in MorrNoL (Fig. 2c). The precipitation RMSD ranges from

0.67mmday21 for ERAINT, SFC_MYNN, and XUE_2DOM

to 1.48mmday21 for Nud (Fig. 2d). Compared to NLDAS2, all

of the simulations produce excessive snow water equivalent in

the snowpack, with the best results inMorrNoL (112.3mm) and

MorrL (113.0mm) (Figs. 2e,f). Based on air temperature and

precipitation statistics of bias, temporal correlation, spatial

correlation, and RMSD among the lake model-enabled simu-

lations (by tallying the frequency of a given run outperforming

the remaining runs), the best performing runs during February

2015 are MorrL and XUE_2DOM, both applying the Morrison

microphysics scheme, and worst are RAGODD and MP3ICE,

which apply Goddard’s radiation and ice microphysics schemes,

respectively (Figs. 2 and 3).

The effects of individual configuration choices on area-

averaged overland precipitation in the inner domain during

February 2015 are shown in Fig. S2. Simulated February precip-

itation is most sensitive to the choice of lateral boundary condi-

tions’ dataset, spectral nudging, and 1D lake model activation.

3) SOLAR RADIATION

All of the runs generate excessive surface insolation in

February 2015 (Fig. 2g), suggestive of insufficient cloud cover

and atmospheric moisture, perhaps related to deficient lake

evaporation or the atmospheric cold bias. As evidence, simu-

lated mean precipitable water across the land within the inner

domain is compared against the North American Regional

Reanalysis (Mesinger et al. 2006) for February 2015, revealing

negative biases of 5%–7% for the primary simulations of

NudVary, NoNudVary, Nud1D, Nud1Ddep, MorrNoL, and

MorrL (not shown). Insufficient atmospheric moisture sup-

ports exaggerated nighttime radiational cooling, leading, for

example, in February to a 2-m dailyminimum temperature bias

of 24.58C over land across the inner domain in Nud1Ddep,

exceeding the cold bias of 22.88C in 2-m daily maximum

temperature. During the cold season, the mechanism of radi-

ation cooling due to clear skies dominates over the warming

effect of enhanced solar radiation during the season with short

sunshine length. This finding is consistent with the study byDai

et al. (1999), which concluded for the study region that the

greenhouse warming effect of clouds exceeds the solar cooling

effect of clouds in winter. The Morrison combination supports

smaller biases in surface insolation of 127.6Wm22 in MorrNoL

and 128.7Wm22 in MorrL compared to the worst bias,

159.1Wm22 in RAGODD, thereby explaining the higher, more

realistic air temperatures simulated with the Morrison combina-

tion. The model-versus-observed RMSD is lowest at 26.9Wm22

for Nud, with artificially high LSTs enhancing evaporation, at-

mospheric moisture, and cloud cover; moderate when applying

the Morrison combination (MorrNoL: 28.6Wm22, MorrL:

29.7Wm22); and highest for RAGODD at 60.5Wm22 (Fig. 2h).

The effects of individual configuration choices on area-

averaged overland incoming surface shortwave radiation in

the inner domain during February 2015 are shown in Fig. S3.

Simulated February insolation is most sensitive to the choice of

radiation and microphysics scheme.

4) ATMOSPHERIC MOISTURE

Insufficient atmospheric moisture contributes to excessive

incident solar radiation, as all of the runs, except for those

forced by time-invariant November LSTs, exhibit negative

biases in 2-m specific humidity during February 2015, ranging

from 20.27 g kg21 in MorrNoL to 20.52 g kg21 in RAGODD

(Fig. 2i). The Morrison combination reduces the humidity dry

bias, with a relatively low RMSD of 0.30 g kg21 in MorrNoL

and 0.37 g kg21 in MorrL. The bias and RMSD in 2-m specific

humidity are lower in MorrNoL, without the lake model, than

in MorrL, with the lake model. Activation of the 1D lake

model leads to lower LSTs and excessive ice cover, which re-

duces lake evaporation in February across the deep lakes,

Superior, Michigan, andHuron, leading to a regional decline in

2-m specific humidity and precipitable water. Goddard’s radi-

ation physics schemes in RAGODD generate lower model-

versus-observed temporal correlations for specific humidity

and shortwave radiation.

b. November 2014–March 2015 performance among
eight simulations

Among the 20 simulations of February 2015, only eight are

extended across November 2014–March 2015, namely, Nud,

NoNud, Nud_Vary, NoNud_Vary, Nud1D, Nud1Ddep,

MorrL, and MorrNoL. Analysis of these 5-month simulations

permits a robust assessment of model performance and the

impacts of spectral nudging, seasonally variant LSTs, 1D lake

model coupling, spatially varying bathymetry, and Morrison

combination. This Great Lakes regional assessment applies

four statistical measures per month, namely, bias, temporal

correlation, spatial correlation, and RMSD, between model

output and overland observations (Tables S2–S5), focusing on

2-m air temperature, precipitation, snow water equivalent of

the snowpack, surface incident shortwave radiation, and 2-m

specific humidity (Fig. 4). The effects of spectral nudging are
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FIG. 4. (first column) Bias, (second column) temporal correlation, (third column) spatial correlation, and (fourth column) root-mean-

square difference during November 2014–March 2015 in (a)–(d) 2-m air temperature (8C), (e)–(h) precipitation (mmday21), (i)–(l)

snowpack snow water equivalent (mm), (m)–(p) surface downward shortwave radiation (Wm22), and (q)–(t) 2-m specific humidity

(g kg21) between observations [Daymet for (a)–(d) and NLDAS-2 for (e)–(t)] and eight NU-WRF simulations over land in the Great

Lakes region.
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isolated by [(Nud2NoNud)1 (Nud_Vary2NoNud_Vary)]/2,

of seasonally variant LSTs by [(Nud_Vary 2 Nud) 1
(NoNud_Vary 2 NoNud)]/2, of lake model coupling by

[(Nud1D 2 Nud_Vary) 1 (Nud1Ddep 2 Nud_Vary) 1
(MorrL 2 MorrNoL)]/3, of spatially varying bathymetry by

(Nud1Ddep 2 Nud1D), and of Morrison combination by

[(MorrNoL 2 Nud_Vary) 1 (MorrL 2 Nud1Ddep)]/2.

1) AIR TEMPERATURE

All of the runs, except for Nud and NoNud with time-

invariant November LSTs, exhibit an atmospheric cold bias,

most notably in February 2015 when the RMSD peaks

(Figs. 4a,d). It is hypothesized that the extensive negative bias

in daily minimum temperature during February is associated

with excessive nighttime radiational cooling (given insufficient

atmospheric moisture and clouds) and exaggerated inversion

strength in the presence of the most extensive snowpack of the

cold season. The Morrison combination substantially reduces

this cold bias and associated air temperature RMSD

(Figs. 4a,d). The November–March mean bias in 2-m air tem-

perature, compared to Daymet, is reduced in magnitude

from 22.558C in Nud1Ddep to 21.188C in MorrL, when

comparing lake model-enabled runs, and from 21.878C in

NudVar to 20.648C in MorrNoL, when comparing runs with-

out the lake model, due to the use of the Morrison combi-

nation. The near-surface warming effect of the Morrison

combination is most distinct over the Canadian portion of the

inner domain andmore pronounced at nighttime than daytime.

Specifically, averaged across January–March 2015, the MorrL

configuration compared to Nud1Ddep yields a mean increase

in minimum 2-m air temperature of 12.18C and in maximum

2-m air temperature of 10.98C, thereby reducing the diurnal

temperature range (not shown). By coupling NU-WRF to the

1D lake model, the atmospheric cold bias and air temperature

RMSD increase due to poorly simulated LSTs and ice cover,

and the temporal correlation between simulated and observed

daily air temperatures declines (Figs. 4a–d). The November–

March mean cold bias is amplified by 0.548C between

MorrNoL and MorrL, with the most notable cooling effect of

the lake model close to the lakes and a comparable cooling

impact on maximum and minimum 2-m air temperatures (not

shown). Allowing LSTs to seasonally vary improves the

temporal correlations for daily 2-m air temperature and is

important for capturing daily variability in air temperature,

precipitation, and insolation (Figs. 4b,f,j,n,r).

2) PRECIPITATION AND SNOWPACK

Simulated cold season precipitation is particularly sensitive

to seasonally varying LSTs and nudging and less so to micro-

physics scheme and lake model coupling. Despite improved air

temperatures, the Morrison combination modestly reduces the

temporal correlations for precipitation (Fig. 4f) and physical

snow depth (Table S3). Precipitation RMSD is mostly insen-

sitive to lake model activation (Fig. 4h, e.g., MorrL versus

MorrNoL). The constant LST simulations, Nud and NoNud,

exhibit excessive January–March lake-effect precipitation and

high precipitation RMSD (Figs. 4e,h), while time-variant LSTs

in other simulations substantially improve these biases. Due to

seasonally variant LSTs, the January–March wet precipitation

bias, compared to NLDAS-2, is reduced from10.64mmday21 in

Nud to 10.33mmday21 in NudVary and from 10.70mmday21

in NoNud to10.40mmday21 in NoNudVary (Fig. 4e). Nudging

increases the spatial and temporal correlations and reduces

precipitation RMSD, with increased temporal correlations for

all analyzed fields, especially precipitation and physical snow

depth (Fig. 4, Table S3). The mean temporal correlation across

November–March for precipitation, compared to NLDAS-2,

increases from 0.66 in NoNud to 0.77 in Nud and from 0.69 in

NoNud_Vary to 0.81 in Nud_Vary, attributed to nudging

(Fig. 4f). Based on temporal correlations, simulated daily

precipitation exhibits greater consistency with the more accu-

rate NLDAS-2 product (Fig. 4f) than Daymet (Table S3).

Compared to NLDAS-2, as the climatological snowpack

becomes more extensive in mid- to late winter across the inner

domain, simulated snow water equivalent exhibits a peak

positive bias in February (Fig. 4i) and a peak RMSD in March

(Fig. 4l). In fact, the mean error, defined as the absolute value

of the bias, peaks in March, largely explained by the growing

negative bias in snowpack water content across southern

Canada that partly offsets the positive bias across much of the

United States’ portion of the inner domain. The low temporal

correlation between observed and simulated daily snowpack

snow water equivalent in February 2015 (Fig. 4j) is attributed

to a regional mismatch over Wisconsin, Michigan, and south-

eastern Ontario, with an erroneous continued accumulation of

snowpack in the model, given the simulated cold bias, when

observations reveal that the snowpack was instead seasonally

melting and retreating.

Several findings regarding simulated snow patterns are

consistent across simulations, including model-versus-observed

temporal correlations for daily liquid-equivalent snowfall,

physical snow depth, and liquid-equivalent snow depth and

spatial correlations for physical snow depth and liquid-

equivalent snow depth compared to NLDAS-2 and SNODAS

(Figs. 4j,k, Tables S3–S4), suggesting relatively lower sensi-

tivity of these snow variables to experimental design. For

example, the spatial correlation between simulated and

SNODAS-observed daily physical snow depth ranges across

experiments from 0.89 to 0.92 inNovember, from 0.82 to 0.89 in

December, from 0.83 to 0.91 in January, from 0.82 to 0.88 in

February, and from 0.83 to 0.89 in March (Table S4). The

RMSD in physical snow depth and snow water equivalent of

snowpack is comparable across the runs, as these variables are

rather insensitive to model configuration (Table S5). Time-

variant LSTs greatly reduce the snowfall RMSD (Table S5)

and improve the temporal correlation for snowwater equivalent

downwind of Lake Superior. Nudging improves the spatial dis-

tribution of liquid-equivalent snowfall and snow depth and re-

duces snowfall RMSD (Tables S4 and S5). Themodel evaluation

is limited by inconsistencies across observational datasets, es-

pecially for liquid-equivalent snow depth (Tables S2–S5).

3) SOLAR RADIATION AND ATMOSPHERIC MOISTURE

The most notable deficiencies in simulated surface insola-

tion are a relatively high RMSD in February and low spatial

correlation with observations in March (Figs. 4o,p). While the
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Morrison combination reduces the excess solar radiation

bias and RMSD in January–March from 120.8Wm22 in

Nud1Ddep to 18.9Wm22 in MorrL and reduces the specific

humidity RMSD, it also weakens the temporal and spatial

correlations in solar radiation (Figs. 4m–p,t). Temporal cor-

relations for solar radiation and specific humidity are improved

by seasonally varying LSTs (Figs. 4n,r).

To elucidate the cause of the atmospheric warming and re-

duced cold bias due to the application of the Morrison com-

bination (specifically associated with the change in radiation

physics packages), the surface energy budget components are

computed, averaged over land across the inner domain, for the

November–March simulations of Nud1Ddep and MorrL (not

shown). The most pronounced mean seasonal changes due to

theMorrison combination are an increase in surface downward

longwave radiation of 116.7Wm22 (MorrL: 246.8Wm22,

Nud1Ddep: 230.1Wm22) and decrease in surface downward

shortwave radiation of 210.5Wm22 (MorrL: 97.5Wm22,

Nud1Ddep: 108.0Wm22). This finding is consistent with an

enhancement in atmospheric moisture and cloud cover with

the Morrison combination.

4) OVERALL PERFORMANCE

Monthly statistics of bias, temporal correlation, spatial cor-

relation, and RMSD are computed for an expanded set of 18

variables based on the eight runs for November 2014–March

2015 (Tables S2–S5). Technically, 14 variables (surface albedo,

sensible heat flux, latent heat flux, precipitation, surface pres-

sure, physical snow depth, liquid-equivalent snowfall, 2-m

specific humidity, surface incident shortwave radiation,

liquid-equivalent snow depth, 2-m air temperature, 10-m zonal

wind, 10-m meridional wind, and 2-m vapor pressure) are as-

sessed, although precipitation, liquid-equivalent snow depth,

and 2-m air temperature are compared against 2–3 observa-

tional datasets each, leading to 18 total comparisons. For each

simulation, 360 statistical values are computed, given four key

statistics, 18 variables, and 5 months, and used to rank the

models from 1 to 8. Based on the mean ranking, the best per-

forming simulations are NudVary (with nudging and season-

ally varying LSTs) and MorrNoL (with Morrison combination

and nudging but no lakemodel) and worst are NoNud (without

nudging, lake model, or seasonally varying LSTs) and

NoNudVary (with seasonally varying LSTs but without nudg-

ing or lakemodel). It is striking thatMorrNoL yields one of the

best performances, while MorrL, with the conceptual advan-

tage of including a simple lake model, only produces a mod-

erate performance overall. When restricted to air temperature

alone versus Daymet, the best performing runs are Nud,

NudVary, and MorrNoL (all without the lake model) and

worst are NoNud, Nud1D, and Nud1Ddep. When restricted

to precipitation alone versus NLDAS-2, the best runs are

Nud1Ddep, NudVary, and Nud1D and worst are NoNud, Nud,

and NoNudVary.

Often, the simulated inner domain-averagedmean climate is

not highly sensitive to modifications in the model configura-

tion, as evident by comparing differences in biases between

the better performing MorrNoL run and worse performing

MorrL run in Tables S2–S5. More pronounced area-averaged

differences between MorrNoL and MorrL due to lake model

coupling, during November–March, include an 84% amplifi-

cation in 2-m air temperature bias (versus Daymet) from

20.648C in MorrNoL to 21.188C in MorrL and a 69% ampli-

fication in 2-m specific humidity bias (versus NLDAS-2)

from 20.10 g kg21 in MorrNoL to 20.17 g kg21 in MorrL.

The RMSD in 2-m air temperature increases by 27% from

1.428C in MorrNoL to 1.818C in MorrL and in 2-m specific

humidity increases by 12% from 0.24 g kg21 in MorrNoL to

0.27 g kg21 inMorrL. The most pronounced differences among

simulations are noted when the analysis focuses on specific

months and areas within the inner domain. For example, dur-

ing January 2015, activation of the 1D lake model from

MorrNoL to MorrL leads to 38–68C lower daily minimum

temperatures across the Upper Peninsula of Michigan, reduc-

tions in precipitation of 20%–40% downwind of Lake Superior

and 10%–30% downwind of Lake Huron, 50% increases in

precipitation downwind of Lake Ontario, and 5%–20% en-

hancement in surface insulation across the state of Michigan

(not shown).

Nudging improves spatial and temporal correlations and

reduces the RMSD for many fields, such as by decreasing a

simulated low-pressure bias over Canada and improving the

temporal correlation for daily air pressure. NoNud generates

poor temporal correlations given the lack of large-scale nudging.

Often the highest temporal correlations are achieved by applying

both nudging and Global Data Assimilation System-provided

LSTs instead of the lake model. The Morrison combination im-

proves the bias and RMSD of many fields, particularly by

dampening the cold bias, but at the expense of weaker temporal

correlations for multiple fields (Tables S2–S5). When activating

the Morrison combination, performance statistics are generally

improved for wind and air temperature (less drift from lateral

boundary condition fields) but deteriorated for precipitation and

physical snow depth (variables not present in the lateral boundary

conditions).

5) DAILY CLIMATE VARIABILITY

The probability density functions of daily November–March

2-m air temperature and precipitation, averaged over land in

the inner domain, are contrasted between the eight simulations

and Daymet for temperature and NLDAS-2 for precipitation

(Fig. 5). For the runs with seasonally varying LSTs (either with

or without lake model coupling), the model generates too

many very cold days with daily means below2208C, especially
in January–March (Figs. 5a,c); the biases are most pronounced

on the cold side of the probability density function. Lakemodel

coupling leads to too frequent very cold days below 2208C, as
excessive ice cover restricts the lakes’ wintertime warming

influence on the atmosphere. The probability density function

of daily mean air temperature is sensitive to the Morrison

combination, which reduces the cold day frequency and in-

creases the warm day frequency, and to temporally varying

LSTs, which impose the opposite effect (Figs. 5a,c).

The model produces too few dry days and too many heavy

precipitation days (Fig. 5b). The probability density function of

daily precipitation is sensitive to the Morrison combination,

which further deviates the probability density function from
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observations by reducing the dry day frequency and increasing

the days with drizzle, and to seasonally varying LSTs, which

shift the probability density function closer to observations by

increasing the dry day frequency and decreasing the number of

days with drizzle (Figs. 5b,d). Nudging decreases the frequency

of very wet days, more like observations (Figs. 5b,d).

c. Spatial assessment of model performance and
configuration impacts

1) AIR TEMPERATURE

The discussion now shifts from an area-averaged assessment

of model performance and the impacts of model configuration

to a spatial assessment of simulated 2-m air temperature versus

Daymet and simulated precipitation, liquid-equivalent snow-

pack, surface incident shortwave radiation, and 2-m specific

humidity versus NLDAS-2 (Figs. 6–10). The model exhibits a

regional cold bias during the cold season that is present as long

as LSTs seasonally evolve beyond the relatively mild initial

November state (Fig. 6). The air temperature bias is sensitive

to time-variant LSTs, the Morrison combination, and lake

model coupling and largely insensitive to spatially varying

bathymetry and nudging (Figs. 6k–o). The Morrison com-

bination substantially reduces the cold bias, holding it to

below 228C at most locations, although lake model activation

somewhat dampens these benefits (Figs. 6i,j). The atmospheric

cooling induced by the 1D lake model, and its LST and ice

cover biases, is mostly confined to the basin (Fig. 6m), on the

order of 0.58–1.58C, and coincides with atmospheric drying,

enhanced pressure, and higher stability. The remaining areas

of notable cold bias in excess of 28C in MorrL (Fig. 6j) are

downwind and in close proximity to the lakes and result from

FIG. 5. Distribution of daily (a) 2-m air temperature (8C) and (b) precipitation (mm) in space and time across

overland portions of the Great Lakes region inner domain, during November 2014–March 2015, according to bin

values on the x axis. Data sources include NLDAS-2, Daymet, and eight NU-WRF simulations. Percentage change

in the frequency of different bins of (c) air temperature and (d) precipitation values due to nudging, varying LST,

1D lake model implementation, spatially varying bathymetry, and Morrison combination.
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FIG. 6. Mean 2-m air temperature (8C) in (a) Daymet and the (b) MorrL run for November 2014–March 2015. Mean bias

in 2-m air temperature (8C) during the same time period for the (c) Nud, (d) NoNud, (e) NudVary, (f) NoNudVary,

(g) Nud1D, (h) Nud1Ddep, (i) MorrNoL, and (j) MorrL runs. Mean effect on 2-m air temperature (8C) during November

2014–March 2015 from (k) nudging, (l) varying LST, (m) 1D lake model implementation, (n) spatially varying bathymetry,

and (o) Morrison combination.
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FIG. 7. Mean precipitation (mmday21) in (a) NLDAS2 and the (b) MorrL run for November 2014–March 2015. Mean

bias in precipitation (mmday21) during the same time period for the (c) Nud, (d) NoNud, (e) NudVary, (f) NoNudVary,

(g) Nud1D, (h) Nud1Ddep, (i) MorrNoL, and (j) MorrL runs. Mean effect on precipitation (mmday21) during November

2014–March 2015 from (k) nudging, (l) varying LST, (m) 1D lake model implementation, (n) spatially varying bathymetry,

and (o) Morrison combination.
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FIG. 8. Mean liquid-equivalent snowpack (mm) in (a) NLDAS-2 and the (b)MorrL run for November 2014–March 2015.

Mean bias in liquid-equivalent snowpack (mm) during the same time period for the (c) Nud, (d) NoNud, (e) NudVary,

(f) NoNudVary, (g) Nud1D, (h) Nud1Ddep, (i) MorrNoL, and (j) MorrL runs, Mean effect on liquid-equivalent snowpack

(mm) during November 2014–March 2015 from (k) nudging, (l) varying LST, (m) 1D lake model implementation,

(n) spatially varying bathymetry, and (o) Morrison combination.
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FIG. 9.Mean surface downward shortwave radiation (Wm21) in (a) NLDAS2 and the (b)MorrL run forNovember 2014–

March 2015. Mean bias in surface downward shortwave radiation (Wm21) during the same time period for the (c) Nud,

(d) NoNud, (e) NudVary, (f) NoNudVary, (g) Nud1D, (h) Nud1Ddep, (i) MorrNoL, and (j) MorrL runs. Mean effect on

surface downward shortwave radiation (Wm21) during November 2014–March 2015 from (k) nudging, (l) varying LST,

(m) 1D lake model implementation, (n) spatially varying bathymetry, and (o) Morrison combination.
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FIG. 10. Mean 2-m specific humidity (g kg21) in (a) NLDAS2 and the (b) MorrL run for November 2014–March 2015.

Mean bias in 2-m specific humidity (g kg21) during the same time period for the (c) Nud, (d) NoNud, (e) NudVary,

(f) NoNudVary, (g) Nud1D, (h) Nud1Ddep, (i) MorrNoL, and (j) MorrL runs. Mean effect on 2-m specific humidity

(g kg21) during November 2014–March 2015 from (k) nudging, (l) varying LST, (m) 1D lake model implementation,

(n) spatially varying bathymetry, and (o) Morrison combination.
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excessive ice cover and diminished heat fluxes from the lakes to

the overlying atmosphere.

2) PRECIPITATION AND SNOWPACK

During November 2014–March 2015, the observed and

simulated precipitation was lowest across Minnesota, Iowa,

and Wisconsin and highest across Maryland, Virginia, West

Virginia, and also central Ontario (Figs. 7a,b). Despite the

consistency in the simulated versus observed spatial patterns of

precipitation, all of the simulations produce excessive precip-

itation across the United States’ portion of the inner domain,

especially during January–March (Figs. 7c–j). The percent bias

in MorrL precipitation is greatest over southeastern Ontario

andWisconsin. The fixed, artificially elevated LSTs (held fixed

at the November values throughout the entire cold season

simulation) in Nud and NoNud support excessive lake-effect

precipitation (Figs. 7c,d,l). The Morrison combination slightly

exaggerates the cold season wet bias (Fig. 7o). Nudging, lake

model use, and heterogeneous bathymetry minimally impact

the mean precipitation patterns (Figs. 7k,m,n). The near-

shoreline features in Figs. 7 and 8 are not likely due to

NLDAS-2’s relatively coarse resolution as they are largely

present in the higher resolution Daymet data.

Compared to NLDAS-2, the model generates excessive

liquid-equivalent snow depth across much of theUnited States’

portion of the inner domain but too little over central-southern

Ontario (Figs. 8c–j), consistent with its precipitation biases

(Figs. 7c–j). As evidence of this consistency, the spatial corre-

lation between November–March mean biases in liquid-

equivalent snow depth and precipitation across the inner

domain in MorrL is 0.70 (N5 186 880 grid cells). The wet bias

in precipitation is identified across 71% of the inner domain

and in liquid-equivalent snow depth is identified across 76% of

the inner domain, further supporting consistency between the

variables’ biases. TheMorrison combination generally reduces

the snow water equivalent, which improves the United States’

biases but worsens biases over Ontario (Fig. 8o). We surmise

systematic differences in lake-effect snowstorms between the

Upper and Lower Great Lakes, with widespread broad cov-

erage events dominating the former region versus single-band

long lake axis parallel bands frequent in the latter region

(Kristovich and Steve 1995; Rodriguez et al. 2007). Despite the

lakes’ pivotal role in regulating snowfall, lake model activation

minimally impacts the spatial pattern and biases in liquid-

equivalent snowpack (Fig. 8m). Seasonally varying LSTs per-

mit more reasonable snowpack downwind of the lakes by

reducing the excess bias in Nud andNoNud but favor excessive

liquid-equivalent snow depth across much of the remaining

inner domain (Fig. 8l). Nudging dramatically impacts liquid-

equivalent snow depth across southern Canada, the Upper

Midwest, and the Northeast, especially by reducing its negative

bias across Ontario (Fig. 8k).

3) SOLAR RADIATION AND ATMOSPHERIC MOISTURE

Both NU-WRF and NLDAS-2 exhibit a northwest-to-

southeast gradient in surface incident shortwave radiation

during November 2014–March 2015 (Figs. 9a,b). Most of the

simulations produce excessive solar radiation, although the

Morrison combination substantially reduces this bias, espe-

cially across the United States’ portion of the inner domain

(Figs. 9i,j,o). Spatially varying bathymetry, lake model cou-

pling, and nudging minimally impact this insolation bias

(Figs. 9k,m,n). Temporally varying LSTs, beyond November’s

initial state, favor reduced cloud cover and atmospheric

moisture and greater surface insolation (Fig. 9l).

Inconsistent with the positive precipitation bias, all of the

runs with seasonally varying LSTs, whether applying a lake

model or not, exhibit a cold-season dry bias in 2-m specific

humidity (Figs. 10a–j), suggesting that the lakes are insufficient

simulated sources of atmospheric moisture. The Morrison

combination reduces the specific humidity dry bias (Fig. 10o).

When applying persistent November LSTs, the artificially

warm lakes in Nud and NoNud generate excessive evaporation

and specific humidity (Fig. 10l). While the area-averaged

November–March positive precipitation bias may seem in-

consistent with the negative specific humidity bias and positive

surface insolation bias (Fig. 4), spatial maps (Figs. 7, 9, and 10)

reveal that the excessive precipitation, for example inMorrL, is

mostly confined over the United States’ portion of the inner

domain while the deficient humidity and excessive solar radi-

ation are mostly confined over southern Canada.

Simulated biases in precipitable water and surface insolation

are broadly consistent during January–March, as evident by a

spatial correlation of20.69 across the inner domain inMorrL (not

shown). Across the vast majority of the inner domain, especially

downwind of the Great Lakes, insufficient precipitable water (at

least partly linked to insufficient lake evaporation from overly icy

lakes) leads to excessive surface insolation, with the exception

isolated to the southwestern inner domain over Wisconsin,

Minnesota, Iowa, and Illinois, where biases are positive for pre-

cipitable water and negative for solar insolation (now shown).

4) TEMPORAL CORRELATIONS

The model-versus-observed temporal correlation is com-

puted by month during November 2014–March 2015, averaged

across months, and plotted (Fig. 11) from MorrL for the fol-

lowing daily, overland variables: surface pressure, 10-m me-

ridional wind, 10-m zonal wind, 2-m specific humidity, 2-m air

temperature, snowpack water equivalent, snow depth, surface

albedo, precipitation, surface incident shortwave radiation,

sensible heat flux, and latent heat flux. These variables are

generally listed in order of strongest to weakest correlations

across the inner domain. For fields related to pressure, wind,

specific humidity, and air temperature, which are among the

variables provided through the lateral boundary conditions,

temporal correlations exceed 0.8 for nearly the entire inner

domain (Figs. 11a–e). In contrast, themodel is less successful in

reproducing the observed variability in surface insolation and

turbulent fluxes (Figs. 11j–l). The precipitation temporal cor-

relation is notably lower downwind of Lake Huron (Fig. 11i),

although observational uncertainty is higher there due to lim-

ited station observations.

d. Model assessment of LST and ice cover

The LST time series during November 2014–March 2015 is

assessed for the three extended runs that include a coupled 1D
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lake model, namely, Nud1D, Nud1Ddep, and MorrL, com-

pared with the Great Lakes Surface Environmental Analysis

(Fig. 12). All three runs produce cold LST biases across the five

lakes, ranging from20.88C for Erie to 21.68C for Michigan in

Nud1D, from 21.48C for Superior to 21.78C for Michigan in

Nud1Ddep, and from 21.28C for Superior to 21.68C for

Michigan in MorrL (Fig. 12). LST biases for Superior are least

in MorrL and for Erie are least in Nud1D. The simulated ini-

tiation of fall turnover (when LST drops to 48C) occurs too

early. The observed date ranges from 27 November for

Superior to 6 January for Ontario, while the simulated date in

MorrL occurs in November for all five lakes (Fig. 12). Some of

this apparent simulated cold lake bias is explained by the in-

herent warm bias of the Great Lakes Surface Environmental

Analysis product due to insufficient satellite retrievals during

prolonged cloudy periods in the autumn–winter. The temporal

correlation between observed and simulated LSTs is lowest for

Superior, ranging from 0.80 in Nud1D to 0.91 in MorrL, and

highest for Ontario, ranging from 0.97 in Nud1D to 0.98 to

MorrL. The LST RMSD is generally lowest for Ontario,

ranging from 1.628C in MorrL to 1.718C in Nud1Ddep, and

highest for Erie, ranging from 1.458C in Nud1D to 2.358C in

Nud1Ddep. Spatially varying bathymetry reduces the RMSD

for Superior’s LST by about 10% but increases it for Erie by

roughly 60% (Figs. 12a,e), as evidence of the difficulty of

tuning a simple 1D lake model to perform well for both deep

and shallow lakes.

NU-WRF coupled to the 1D lake model generates excessive

ice cover compared to the Great Lakes Environmental Research

Laboratory–Great Lakes Ice Cover Database (Fig. 13). This

5-month mean bias in lake-average ice cover is modest for

Erie, ranging from21.7% in Nud1D to17.4% in Nud1Ddep,

and pronounced for Superior, ranging from 127.5% in MorrL

to 139.9% in Nud1D. The model-versus-observed temporal

correlation in daily ice cover is lowest for Superior, ranging

from 0.63 in Nud1D to 0.80 in MorrL, and highest for Erie,

ranging from 0.91 in Nud1Ddep to 0.97 in Nud1D (Fig. 13).

The ice cover RMSD is relatively modest for Erie, ranging

FIG. 11. Mean temporal correlation between MorrL-simulated and observed daily values of (a) surface pressure, (b) 10-m meridional

wind component, (c) 10-m zonal wind component, (d) 2-m specific humidity, (e) 2-m air temperature, (f) snowpack snowwater equivalent,

(g) physical snow depth, (h) surface albedo, (i) precipitation, (j) surface downward shortwave radiation, (k) sensible heat flux, and

(l) latent heat flux. One correlation is performed per calendar month during November 2014–March 2015, and then the average of the five

correlations is plotted. The observational datasets include NLDAS2 for (a)–(d), (f), and (h)–(l), Daymet for (e), and SNODAS for (g).

Plots are generally ordered by variable with the strongest to weakest correlations.
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from 11.1% in Nud1D to 20.3% in Nud1Ddep, and vast for

Superior, ranging from 35.6% in MorrL to 50.8% in Nud1D.

MorrL displays the lowest biases and RMSD and highest

temporal correlations in ice cover, with the Morrison combi-

nation supporting higher, more realistic air and water tem-

peratures. Lake Erie rapidly transitioned from a nearly ice-free

state to almost full ice cover during January 2015, which was

captured by the model in terms of rate, magnitude, and ap-

proximate timing (Fig. 13e). Lake Ontario underwent pro-

nounced daily ice cover fluctuations, with an average observed

day-to-day variation of 3.2%, while the model produces an

overly smoothed time series with insufficient daily varia-

tions of 1.1% in Nud1D and 2.0% in MorrL (Fig. 13c); the

model’s excessively extensive and thick ice cover is inade-

quately sensitive to air temperature and wind speed varia-

tions. In NU-WRF, Superior ices up about 1–2 months too

early and unrealistically remains mostly ice covered for

much of the cold season (Fig. 13a). The results reinforce the

limitations of using 1D lake models to simulate deep lakes’

conditions.

e. Model assessment of overlake conditions

The time series of five overlake variables, namely, 2-m air

temperature, surface incident downward solar radiation,

10-m wind speed, sensible heat flux, and latent heat flux, is

contrasted between eight simulations (NoNud_Vary, Nud_

Vary, NoNud, Nud, Nud1D, Nud1Ddep, MorrNoL, and

MorrL) and Great Lakes Evaporation Network measure-

ments for November 2014–March 2015 (Figs. 14 and 15).

The analysis focuses on Stannard Rock (45.838N, 85.158W),

Spectacle Reef (45.778N, 84.158W), Granite Island (46.728N,

87.408W), Long Point (42.578N, 80.058W), and White Shoal

(45.838N, 85.158W), with results for Stannard Rock graphi-

cally presented (Fig. 14) for focused discussion. Model

performance is best for MorrNoL and worst for Nud1D

when considering all five overlake variables, five Great

Lakes Evaporation Network sites, five months, and eight

simulations.

An overlake atmospheric cold bias is simulated at all sites

when averaged across the 5-month period, but most notably in

January–March (Figs. 14a,d,g,j,m). Nudging and seasonally

varying LSTs reduce this bias, yet lakemodel activation greatly

amplifies it. While coupling NU-WRF to the 1D lake model

permits inclusion of key lake–atmosphere interactions, it re-

sults in worse air temperature simulations than using Global

Data Assimilation System skin temperatures as lake surface

boundary conditions. Averaged among the Great Lakes

Evaporation Network sites, theMorrison combination reduces

FIG. 12. Time series of daily lake surface temperature (8C) for Lakes (a) Superior, (b) Huron, (c) Ontario, (d) Michigan, and (e) Erie

during November 2014–March 2015 from the Great Lakes Surface Environmental Analysis (GLSEA, black), MorrL (red), Nud1Ddep

(blue), and Nud1D (purple).
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the atmospheric cold bias by roughly 1/4th when the lake

model is active. Regarding Stannard Rock’s overlake air

temperature simulation, the bias ranges from 27.08C in

Nud1D to 21.78C in MorrNoL, temporal correlation ranges

from 0.87 in MorrL to 0.97 in NudVary, and RMSD ranges

from 2.48C in MorrNoL to 8.48C in Nud1D, indicating better

performance without the lake model (Figs. 14a,d,g,j,m). The

MorrL-simulated overlake conditions are more consistent with

the Great Lakes Evaporation Network observations, in terms

of bias, temporal correlation, and RMSD at Long Point

(bias 5 23.68C) on Lake Erie and White Shoal (23.58C) on
LakeMichigan and least consistent at Stannard Rock (24.48C)
on Lake Superior.

Likely related to insufficient lake-effect-induced atmo-

spheric moisture and cloud cover, NU-WRF produces ex-

cessive overlake shortwave radiation (Figs. 14b,e,h,k,n). At

Stannard Rock, the bias ranges from 20.3Wm22 in NoNud

to 137.2Wm22 in Nud1D, temporal correlation ranges from

0.46 in NoNud to 0.76 in MorrNoL, and RMSD ranges from

31.3Wm22 in Nud to 46.3Wm22 in Nud1D. The Morrison

combination reduces the excessive overlake shortwave bias

by 40% when the lake model is active. The simulated over-

lake wind speeds are too weak compared to the Great Lakes

Evaporation Network observations. Stannard Rock’s bias

in 10-m wind speed ranges from 23.6m s21 in Nud1D to

21.5ms21 in Nud and temporal correlation ranges from 0.76 in

NoNudVary to 0.82 in NudVary.

The Great Lakes Evaporation Network dataset provides

valuable insights into overlake turbulent fluxes, applied here to

evaluate NU-WRF’s credibility. NU-WRF produces insuffi-

cient turbulent fluxes over Lakes Superior (Granite Island and

Stannard Rock) and Huron (Spectacle Reef), coinciding with

the greatest underestimation of near-surface wind speeds, and

excessive turbulent fluxes over shallow Lake Erie (Long Point)

(Figs. 14 and 15). Compared to observed sensible heat fluxes at

Stannard Rock, the model bias varies from 270.9Wm22 in

Nud1D to 215.4Wm22 in NoNudVary, temporal correlation

varies from 0.19 in Nud1Ddep to 0.75 inMorrNoL, and RMSD

varies from 49.9Wm22 in MorrNoL to 109.4Wm22 in

Nud1Ddep (Figs. 15a,c,e,g,i). Temporally varying LSTs reduce

the sensible heat flux bias from Nud and NoNud. Lake model

coupling leads to sensible heat fluxes that are insufficient

over Superior and excessive over Erie. Compared to observed

latent heat fluxes at Stannard Rock, the bias ranges from

290.5Wm22 in Nud1D to 112.3Wm22 in NoNud, temporal

correlation ranges from 0.21 in Nud1Ddep to 0.68 in Nud, and

RMSD ranges from 84.8Wm22 in Nud to 119.0Wm22 in

Nud1D (Figs. 15b,d,f,h,j). Simulated LH fluxes (Fig. 15) are

insufficient over Superior and Huron given excessive ice

cover (Fig. 13).

FIG. 13. Time series of daily percent ice cover for Lakes (a) Superior, (b) Huron, (c) Ontario, (d) Michigan, and (e) Erie during

November 2014–March 2015 from the GLERL Great Lakes Ice Cover Database (black), MorrL (red), Nud1Ddep (blue), and Nud1D

(purple).
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4. Discussion and conclusions

The 3-kmNU-WRF ensemble for the Great Lakes Basin for

November 2014–March 2015 yields the following conclusions

regardingmodel performance and impacts of parameterization

selection, while noting the limitation of the study by focusing

on a single cold season.

d Consistent with studies by Bonan (1995), Lofgren (1997),

and Notaro et al. (2013a), the Great Lakes impose a

FIG. 14. Time series of daily (left) 2-m air temperature (8C), (center) downward surface shortwave radiation (Wm22), and (right) 10-m

wind speed for (a)–(c) November 2014, (d)–(f) December 2014, (g)–(i) January 2015, (j)–(l) February 2015, and (m)–(o) March 2015 at

Stannard Rock based on Great Lakes Evaporation Network (GLEN) observations and eight NU-WRF model simulations.
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FIG. 15. Time series of daily (left) sensible heat flux (Wm22) and (right) latent heat flux (Wm22)

for (a),(b) November 2014, (c),(d) December 2014, (e),(f) January 2015, (g),(h) February 2015, and

(i),(j) March 2015 at Stannard Rock based on Great Lakes Evaporation Network (GLEN) obser-

vations and eight NU-WRF model simulations.
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pronounced influence on cold season climate across the sur-

rounding states. Accurate lake representation is critical to

correctly simulate the Midwest and Northeast United States’

climatology.
d NU-WRF has an intrinsic atmospheric cold bias across the

Great Lakes Basin during the cold season, as also noted in

WRF by Mallard et al. (2014) and D’Orgeville et al. (2014).

As noted here and by Mallard et al. (2014), coupling WRF

to a 1D lakemodel amplifies the cold atmospheric bias due to

LST and ice cover biases. The Morrison combination helps

alleviate the atmospheric cold bias (likely by enhancing

cloud cover and downward longwave radiation), consistent

with Mooney et al. (2013) and D’Orgeville et al. (2014) who

conclude that the RRTM longwave radiation scheme,

MYNN boundary layer scheme, and Morrison’s microphys-

ics scheme improve winter air temperature simulations.
d NU-WRF generates excessive cold season precipitation,

with too few dry days and too many heavy precipitation

days.Mallard et al. (2014) likewise identified aWRFwet bias

in this region, extending across the entire annual cycle.

Furthermore, the region’s cold season wet bias emerged in

WRF experiments by D’Orgeville et al. (2014) and Sharma

et al. (2019); the latter study determined that WRF failed to

produce enough cold-season dry days, as also seen here. The

simulated wintertime excessive precipitation bias in the

Great Lakes region is not restricted to WRF, as Basile et al.

(2017) identified the same persistent bias in all 12 examined

Coupled Model Intercomparison Project Phase Five models

and all 10 examined North American Regional Climate

Change Assessment Program regional climate models. The

cause of this regional bias across models remains uncertain,

although Basile et al. (2017) hypothesized that observed

wintertime precipitation measurements in this region might

suffer significantly from gauge error associated with solid

phase precipitation and wind-induced undercatch (Legates

and Willmott 1990) due to very high snow-to-liquid precip-

itation ratios (light-weighted snow particles that more easily

blow around gauges) especially in common lake-effect lo-

cations (Baxter et al. 2005). In fact, based on data presented

by Adam and Lettenmaier (2003), the mean precipitation

catch ratio for the Great Lakes region for November–March

is only 76%, such that correcting the NLDAS-2 precipita-

tion with this catch ratio would greatly amplify the actual

observed precipitation rates and eliminate the apparent

NU-WRF-simulated wet bias. NU-WRF-simulated surface

insolation is excessive in the region, and despite the positive

precipitation bias, low-level specific humidity is insufficient;

the Morrison combination helps reduce the solar radiation

biases. This finding is consistent with WRF studies by

Martínez-Castro et al. (2019), which found that theMorrison

scheme better resolved convective cloud features, and Orr

et al. (2017), which found that the Morrison scheme im-

proved cloud cover and reduced excessive surface incident

shortwave radiation. Here, the Morrison combination im-

proves most performance statistics related to wind and air

temperature yet degrades the simulated precipitation.
d NU-WRF’s cold season precipitation across the Great Lakes

Basin is sensitive to seasonally varying LSTs and nudging

and mostly insensitive to microphysics scheme and 1D lake

model coupling. Likewise, Nicholls et al. (2017) and Lim

et al. (2020) found that the choice of cloud microphysics

scheme did not substantially impact precipitation distribu-

tion and intensity for United States nor’easters or Korean

snowstorms, respectively. While Conrick et al. (2015)

found a large sensitivity of WRF-simulated precipitation to

boundary layer scheme during a single lake-effect snow-

storm, this sensitivity is minimal when averaged in space and

time across the Great Lakes Basin for the current paper’s

month-long simulations (e.g., comparingNud1Ddepwith the

Yonsei University boundary layer scheme, PBLMYJ with

the Mellow–Yamada–Janjić boundary layer scheme, and

SFC_MYNN with the Mellor–Yamada–Nakanishi–Niino

boundary layer scheme).
d The present study demonstrates the benefits of spectral

nudging, which increases the model-versus-observed tem-

poral correlations for all analyzed fields, particularly pre-

cipitation and physical snow depth. Prior WRF studies have

produced a spectrum of detrimental to beneficial impacts

from spectral nudging, including degraded United States

precipitation simulations by Bowden et al. (2012, 2013), Otte

et al. (2012), and Spero et al. (2014); relative insensitivity of

simulated United States’ precipitation amounts to spectral

nudging strength by Bullock et al. (2014); and reduced East

Asian temperature and precipitation biases by Ma et al.

(2016) and Tang et al. (2017). Here, nudging improves

the spatial patterns of snowfall and snow depth, including

reducing Ontario’s negative bias in liquid-equivalent

snow depth.
d Alexandru et al. (2009) and Glisan et al. (2013) expressed

concern that strong nudging can reduce or filter out extreme

meteorological events by pushing a regional climate model

toward a smoother large-scale atmospheric state. Here,

spectral nudging reduces the cold-season frequency of heavy

precipitation days, although this modification of the proba-

bility density function of daily precipitation increases the

consistency with observations.
d Model-versus-observed temporal correlations during the

cold season are typically highest for pressure, wind, specific

humidity, and air temperature, likely due to these variables’

inclusion in the lateral boundary conditions and spectral

nudging, and lowest for surface incident shortwave radiation

and overland turbulent fluxes. These findings are consistent

withWRF studies byMooney et al. (2013) and Boulard et al.

(2016), which identified higher temporal correlations with

observations for air temperature, precipitation, and wind

speed and lower correlations for humidity and shortwave

radiation.
d Fall turnover initiates too early in the model, leading to a

wintertime cold LST bias, as also noted by Mallard et al.

(2014) using WRF coupled to a 1D lake model. The model-

versus-observed temporal correlation in LST is highest for

Ontario and lowest for Superior and in percent ice cover is

highest for Erie and lowest for Superior. Lake Superior’s ice

season initiates 1–2months too early in NU-WRF coupled to

the 1D lakemodel. Prior studies have concluded that 1D lake

models perform best for shallow lakes (Martynov et al. 2010;

SEPTEMBER 2021 NOTARO ET AL . 2447

Brought to you by MIT LIBRARIES | Unauthenticated | Downloaded 09/22/21 12:14 PM UTC



Samuelsson et al. 2010; Bennington et al. 2014; Mallard et al.

2014), with inferior results for deep Superior. Mallard et al.

(2014) determined that the LST and ice cover performance

of WRF coupled to the Freshwater Lake Model was best for

Erie and worst for Superior, with excessive Superior ice

cover. Here, the inferior performance of the 1D lake model

in NU-WRF over deep Lake Superior generally leads to the

greatest biases in LST, ice cover, overlake air temperature,

and lake evaporation among the Great Lakes.
d The Morrison combination improves ice cover biases,

RMSD, and temporal correlations by dampening the

atmospheric model’s regional cold bias and supporting

more realistic cold season LSTs.
d NU-WRF coupled to the 1D lake model underpredicts cold

season evaporation over Lakes Superior and Huron, related

to excessive ice cover, cooler-than-observed water temper-

atures, and insufficient wind speeds.
d Based on comparison of NU-WRF simulations coupled to

the 1D lakemodel with either fixed 50-m uniform lake depths

(Nud1D) or spatially variable lake depths (Nud1Ddep), use of a

constant 50-m lake depth for all lake grid cells, as commonly

done in earlier generations of lake models, leads to substantial

impacts over, and in close proximity to, the lakes, but not much

impact when averaged across the inner domain. Uniform lake

depth results in 1–2.58C higher LSTs on shallow Lake Erie

(actualmean depth5 19m) inmid–November to early January

and over 0.58C lowerLSTs on deepLake Superior (actualmean

depth 5 147 m) in late November to mid–December.

Furthermore, uniform lake depth leads to 20%–90% less ice

cover on Lake Erie during early to mid-January, with a de-

layed onset of the ice season, and 10%–30%greater ice cover

on Lake Superior. In response to these LST and ice cover

responses to uniform 50-m lake depths, overlake turbulent

fluxes are greatly enhanced over Lake Erie, with November–

Marchmean sensible and latent heat fluxes at Long Point (on

Lake Erie) increased by 20.6 and 14.6Wm22, respectively,

but only modestly impacted over Lake Superior. The en-

hanced turbulent fluxes over Lake Erie support 30%–60%

greater precipitation over and downwind of the lake during

January 2015. These findings regarding the impacts of

uniform versus spatially varying lake bathymetry on LST

and ice cover are highly consistent with the results of Qiu

et al. (2020).

While NU-WRF’s coupling to a 1D lake model is a critical

achievement for representing lake–atmosphere interactions

and their role in climate change, the 1D lake model degrades

many aspects of the simulated regional climate. However, the

authors do not recommend that climate modelers proceed

without inclusion of a representation of lake physics in their

models. Rather, further efforts are needed to incorporate 3D

lake models into high-resolution regional climate models to

improve spatiotemporal patterns of LST, ice cover, and lake–

atmosphere interactions. As a result of this modeling need,

the authors developed an advanced modeling tool for large

lake basins, consisting of NU-WRF, with nested domains

down to 3 km, interactively coupled to the Finite Volume

Community Ocean Model [this ocean model, run offline by

Fujisaki-Manome et al. (2017), successfully simulates over-

lake turbulent fluxes] to represent 3D lake hydrodynamics.
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