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Cyanobacteria biomass models are routinely used in Lake Erie to predict the occurrence and location of
algal blooms. However, current forecasts do not predict the microcystin toxins produced by these blooms.
In this study, we used an extensive dataset of microcystin concentrations to generate weekly distribution
maps in Lake Erie for the summers of 2018 and 2019. Using a 3D Eulerian tracer model (ETM) initialized
with these maps, we simulated microcystin transport over 7 days, under two conditions: (1) the initial
microcystin is mixed within the surface-mixed layer; (2) the initial microcystin is distributed throughout
the entire water column. Two scenarios were tested for each condition: one incorporating microcystin
production rates into hydrodynamic transport and one excluding them. Model performance was evalu-
ated against weekly sample data in predicting whether microcystin concentrations surpassed specific
thresholds (0.3, 1.0, 5.0, 10.0, and 20.0 lg/L), and in predicting trend directionality over each week.
Overall, the ETM with hydrodynamics alone captured the transport of microcystins and predicted micro-
cystin concentrations in 69% of the simulations. Incorporating microcystin production into the model
increased the accuracy of forecasts by an additional 10%. Moreover, models with microcystin production
successfully predicted microcystin concentrations greater than 5 lg/L during a large bloom, high-
microcystin year (2019), while incorrectly forecasting concentrations above 5 lg/L during a small bloom
year (2018). With limited data to initialize the ETM, no single model configuration consistently outper-
formed others. It is necessary to consider the full range of model configurations when utilizing their out-
puts for making management decisions.
� 2023 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.
Introduction

Lake Erie, the most productive of the Laurentian Great Lakes,
has experienced summertime (July to October) cyanobacterial
harmful algal blooms (CHABs) in the past two decades (Stumpf
et al., 2012; Bridgeman et al., 2013; Steffen et al., 2014). The re-
emergence of CHABs in Lake Erie after a period of decline is primar-
ily linked to excessive nutrient input from non-point agricultural
sources (Watson et al., 2016; Martin et al., 2021). The most severe
CHABs originate in the shallow western basin of Lake Erie near the
mouth of the Maumee River due to its close proximity to nutrient
loads and favorable temperature and light climate (Chaffin et al.,
2011; Kane et al., 2014). Lake Erie CHABs are dominated by Micro-
cystis aeruginosa, a highly buoyant colony-former capable of pro-
ducing high concentrations of hepatotoxic microcystins (MCs)
(Steffen et al., 2014; Harke et al., 2016). While many socioeco-
nomic and ecological problems are associated with CHABs, MC
contamination of recreational and drinking waters is the most seri-
ous concern. One of the most well-known examples is the ‘‘do not
drink” advisory issued by the City of Toledo in August 2014, which
affected half a million people and lasted for three days (Jetoo et al.,
2015), as a result of MC concentrations in tap water that exceeded
the World Health Organization guideline of 1 lg/L.

Several short-term forecast models have been developed to pre-
dict CHAB biomass, distribution, and transport in Lake Erie. These
models aim to provide early information on CHAB biomass for
decision support, which can help mitigate negative impacts at
drinking water treatment plants and beaches. The models are
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initialized from satellite images of CHAB biomass (Wynne et al.,
2010) and use hydrodynamic conditions predicted by a hydrody-
namic model to forecast CHAB transport and determine the bloom
location and biomass several days into the future (Wynne et al.,
2013; Rowe et al., 2016). These short-term forecast models are
developed using either a Lagrangian or an Eulerian approach. For
example, the Lake Erie Harmful Algal Bloom Forecast system,
maintained by the National Oceanic and Atmospheric Administra-
tion (NOAA), employs a three-dimensional (3D) Lagrangian particle
tracking model (referred to as the NOAA HAB Tracker; available at
https://coastalscience.noaa.gov/research/stressor-impacts-miti-
gation/hab-forecasts/lake-erie/, accessed December 11th, 2021).
This model is used in combination with satellite images to provide
information on the bloom’s current location and biomass, as well
as its forecasted position over the next 96 h. A 3D Eulerian tracer
model has also been tested to predict CHAB biomass distribution
and is planned to be linked to the operational version of the Water
Cycle Prediction System for the Great Lakes by Environment and
Climate Change Canada to produce daily forecasts of CHAB trans-
port (Soontiens et al., 2019).

The Eulerian and Lagrangian approaches differ in how they
describe fluid properties, such as toxin concentration, within a
field. The Lagrangian approach focuses on tracking the motion of
numerous discrete flowing particles and their associated proper-
ties as they move through the field. The trajectories and properties
of individual particles are changing as they evolve over time. By
releasing and observing a multitude of such particles, one can
obtain a comprehensive understanding of the fluid’s dynamics
and properties in the domain. Conversely, the Eulerian approach
adopts a fixed spatial frame of reference, describing the fluid prop-
erties at specific, predetermined points within the field. Within
this framework, one describes the temporal evolution of fluid prop-
erties at a vast array of fixed locations across the domain to under-
stand the flow system. The Eulerian tracer models are more
effective in representing continuous concentration fields and is
more compatible with lower-food web biological models, which
are also developed within the Eulerian framework (Xue et al.,
2014; Rowe et al., 2017; Zhou et al. 2023). In contrast, the Lagran-
gian approach is better suited for representing properties that vary
across a population, such as buoyant velocities for Microcystis colo-
nies. Moreover, the Lagrangian approach is well-adapted for track-
ing exposure to environmental conditions over time, which is
essential for individual-based models of organisms (Li et al., 2014).

Recently, Zhou et al. (2023) conducted a comprehensive evalu-
ation of Lagrangian and Eulerian transport models for forecasting
cyanobacterial harmful algal blooms (CHABs) in Lake Erie. The
study compared three types of 3D models: 1) a Lagrangian particle
model (LPM), 2) an Eulerian tracer model (ETM), and 3) a property-
carrying particle model that utilizes a hybrid Eulerian-Lagrangian
approach. The results indicated that all three transport models
demonstrated similar levels of skill, with the ETM outperforming
the others in the overall evaluation. Consequently, we chose to
use the 3D ETM for forecasting microcystin (MC) concentrations
in this study. This decision was also based on the fact that the Eule-
rian approach is more effective at estimating changes in continu-
ous fields of concentration driven by biophysical processes and
offers greater flexibility in incorporating numerical descriptions
of biological processes.

Compared to forecasting CHAB biomass, predicting MC concen-
trations is more challenging. There are relatively few observed MC
data points (compared to remote sensing biomass data), which cre-
ates a barrier for model development, calibration, and evaluation of
model performance. CHAB biomass cannot be used as a proxy for
MC concentration, and remote sensing cannot detect MCs
(Stumpf et al., 2016). To overcome data limitations, recent research
has incorporated the MC-to-chlorophyll ratio from grab samples to
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forecast MC concentrations. They averaged the ratio across all sites
for a given date and then multiplied the mean ratio by remote
sensing-derived chlorophyll concentrations to back-calculate MC
concentration (Liu et al., 2020). Similarly, Qian et al. (2021) used
a MC-chlorophyll empirical relationship in a Bayesian hierarchical
modeling framework to forecast MC concentrations. This approach
allowed Liu et al. (2020) and Qian et al. (2021) to estimate the
spatially- and temporally-resolved probability of MC exceeding
certain advisory concentrations in the western basin of Lake Erie;
however, this approach has limitations. The MC-to-chlorophyll
ratio can range from less than 0.05 to greater than 0.50 throughout
the western basin on a single day, suggesting that the MC-to-
chlorophyll ratio varies as much spatially as it does temporally
(Chaffin et al., 2021). Furthermore, the MC-to-chlorophyll
approach omits MC data that does not have a paired chlorophyll
measurement (such as drinking water intakes). Ideally, MC fore-
casts should rely on measured MC concentrations rather than
surrogates.

Additionally, when compared to CHAB biomass forecasts, there
are other knowledge gaps in developing an MC forecast. The mod-
eling of CHAB biomass (and likely MCs) transport is sensitive to the
initial vertical distribution of the bloom. In CHAB biomass forecast
modeling, several studies suggest that applying surface chlorophyll
concentrations to the surface mixed layer produces the highest
accuracy (Rowe et al., 2016; Soontiens et al., 2019). However, it
remains unknown whether the same process can be applied to
forecasting MCs. Furthermore, current CHAB biomass models and
forecasts (i.e., the NOAA HAB Tracker) assume that physical
processes such as water currents and wind mixing dominate over
biological mechanisms (cell division and death) in explaining
short-term bloom location and biomass (Rowe et al., 2016). Never-
theless, a recent report showed that MC production rates decrease
throughout the bloom season (Chaffin et al., 2022). Therefore, it is
crucial to evaluate the physical processes influencing the accuracy
of MC concentration forecasts and understand how incorporating
biological processes could improve these forecasts.

In this study, we used a comprehensive dataset of MC concen-
trations compiled from multiple sources, including university
researchers, federal and state agencies, water treatment plant
intakes, and volunteer scientists. This data was used to create
weekly maps of MC concentrations in Lake Erie to initialize an
Eulerian tracer model (ETM; see below for the model description),
aiming to predict the spatiotemporal patterns of MC during two
CHAB seasons in 2018 and 2019. The MC simulations were ana-
lyzed with respect to concentration and extent, focusing on the sig-
nificance of mixing, whether initial microcystin is mixed
throughout the entire water column or within the surface-mixed
layer, and biological processes, such as incorporating MC produc-
tion rates. This analysis aimed to explain the short-term variability
of MC concentrations.
Method and materials

Observational data

We requested MC concentration data from all institutions that
routinely (weekly to biweekly) collect grab samples from the west-
ern basin of Lake Erie. We received data from five sources, totaling
366 data points in 2018 and 655 in 2019 (see Electronic Supple-
mentary Material (ESM) for Data Sources). The institutions that
submitted data collected grab samples using different water collec-
tion methods (Golnick et al., 2016) and analyzed microcystins
(MCs) by enzyme-linked immunosorbent assay (ELISA; Eurofins
Abraxis, #520011, Warminster, PA, USA). We did not request MC
data analyzed by other analytical methods (i.e., LC-MS or HPLC)

https://coastalscience.noaa.gov/research/stressor-impacts-mitigation/hab-forecasts/lake-erie/
https://coastalscience.noaa.gov/research/stressor-impacts-mitigation/hab-forecasts/lake-erie/
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due to the inherent differences in these methods (Chaffin et al.,
2021). All health standards are based on ELISA data. No attempt
was made to normalize data for differences in sampling depth
because Golnick et al. (2016) reported no significant differences
in chlorophyll-a concentrations among different water sample col-
lection methods in a side-by-side comparison study. Microcystin
concentrations in the western basin can range from less than
0.3 lg/L in the open waters of the western basin to greater than
40 lg/L in Maumee Bay (Chaffin et al., 2021). Collectively, this indi-
cates that the bias introduced by different water sample collection
methods is much smaller than the spatial variability of MCs in
western Lake Erie. Most organizations reported total MC (as lg/
L), but some provided MC data as particulate MC and dissolved
MC concentrations (both as lg/L), which we summed to calculate
total MC concentration. Grab sample data were binned by week
and assigned a common collection date as occurring on Monday.
The largest, regular sample collection programs (e.g., NOAA) often
occurred on Mondays, except due to inclement weather. This was
done to generate weekly MC maps using all available data, which
served to provide the initial conditions for the ETM to predict the
MC concentrations in the following week. It is important to note
that the model results on the actual sampling dates were used
for model-observation comparisons for accuracy and reliability.

We used remotely sensed algal biomass images (from the NOAA
imagery archive) to identify a zero-MC concentration boundary in
weekly maps. The zero-MC boundary was defined by the edge of
the visible satellite-derived boundary, determined through image
classification. We employed the inverse distance weighting
(IDW) tool within ArcGIS to create an interpolated raster of MC
concentrations (i.e., MC concentration maps) using all collected
data, which were used to initialize the ETM. Fig. 1a shows an exam-
ple for August 19th, 2019.

In addition to the weekly datasets mentioned above, a high-
spatial-resolution one-day sampling was conducted on August
7th, 2019 (referred to as ‘‘HABs Grab,” Chaffin et al., 2021). During
this event, 172 grab samples were collected, covering an area of
2270 km2 in the western basin of Lake Erie within a six-hour mea-
surement window (Fig. 1b). The HABs Grab provided a high-
resolution distribution of MC and served as the best data source
for evaluating the impact of hydrodynamic transport on MC spatial
Fig. 1. (a) An example of a microcystin concentration map (August 19th, 2019) for the w
August 7th, 2019. (c) The weekly sample locations by GLERL. (d) An enlarged view of the
sampling locations used to collect water for microcystin production experiments (Cha
Maumee River mouth from the rest of the basin. (For interpretation of the references to
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variability. On the other hand, consistent weekly sampling of MC
concentrations was conducted by the NOAA’s Great Lakes Environ-
mental Research Laboratory and the Cooperative Institute for Great
Lakes Research (hereafter referred to as ‘‘GLERL”) at eight monitor-
ing locations (Fig. 1c). These data were used to evaluate the mod-
eled seven-day forecast performance temporally. The GLERL
samples were most consistently collected on Mondays, with data
generated from all eight sites during most sampling cruises. More
details about the GLERL dataset can be found in the ESM Data
Sources.

Note that the zero-MC boundary, identified using image classi-
fication, was also validated using data from the HABs Grab that
showed no detection of MC outside the satellite-derived biomass
boundary. The IDW method also worked well for the HABs Grab
because there were a large number of samples available (172 col-
lected on one day) within the basin. However, the IDW method
may have limitations for weeks when only a handful of MC concen-
trations were available, which introduced additional uncertainties
to the model’s initial conditions. Although the IDW method pro-
duced interpolated raster values between known sampling points
and the zero-MC edge, the model evaluation focused on the area
bounded by the GLERL sampling points.

Hydrodynamic model

The Finite Volume Community Ocean Model (FVCOM) is a
three-dimensional (3D) hydrodynamic, free-surface, primitive-
equation model that solves the integral form of the governing
equations on an unstructured, sigma-coordinate mesh (Chen
et al., 2003). FVCOM has been applied in many coastal systems
characterized by geometric complexity and highly variable flow
patterns, including various applications to the Great Lakes
(Anderson et al., 2015; Rowe et al., 2016; Xue et al., 2015, 2017,
2022; Huang et al., 2021).

The Lake Erie (LE)-FVCOM employs an unstructured grid mesh
composed of 6106 nodes and 11,509 elements (Fig. 1d). The mesh
has a grid resolution of 2.5 km in the central basin, 1.5 km in the
western basin, and 0.5 km in Maumee Bay (western corner of the
basin) and the area around islands between the central and west-
ern basins. The model is vertically divided into 20 uniform sigma
estern basin of Lake Erie. (b) The sample collection locations of the HABs Grab on
ETM grid (in red) in the western basin of Lake Erie with blue triangles marking the
ffin et al., 2022). The solid black line distinguishes the areas within 20 km of the
color in this figure legend, the reader is referred to the web version of this article.)
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layers that provide vertical resolution ranging from approximately
0.1 m for the shallow areas (� 2 m) to approximately 0.5 m for the
deep regions (� 10 m) in the western basin of Lake Erie. The open
boundary conditions consist of primary inflow from the Detroit
River and outflow through the Niagara River, with specified hourly
water levels using the NOAA gauges at Gibraltar, Michigan
(9044020) and Buffalo, New York (9063020). The LE-FVCOM is dri-
ven by hourly atmospheric forcing from the High-Resolution Rapid
Refresh (HRRR), a cloud-resolving and convection-allowing
weather forecast and data assimilation system running in real time
at a 3-km grid resolution (Benjamin et al., 2016).

Eulerian tracer model

The ETM was developed from the FVCOM general ecosystem
module (GEM), which solves the advection–diffusion equation
coupled to biological functions using a finite volume approach.
The advective transport and turbulent mixing of microcystin con-
centration (C) in the ETM were governed by following equation:
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where u, v, and w are the x, y, and z components of the water veloc-
ity, Kh is the vertical thermal diffusion coefficient, wb is the buoyant
velocity, Fc is the horizontal diffusion term, and Csource and Csink rep-
resents the sources (production) and sinks (loss) of C, respectively,
due to the biological processes. In this study, the source and sink
terms were replaced by an MC production function (described in
the following section).

Microcystis regulates the buoyancy of its colonies, with most of
them being positively buoyant in Lake Erie (Den Uyl et al., 2021).
The competition between algae buoyancy and turbulent mixing
is an important factor in the vertical distribution of colonies within
the water column. Wind-driven turbulence can mix colonies dee-
per into the water column, while calm conditions allow them to
float back towards the surface (Medrano et al. 2013; Rowe et al.,
2016). As the Eulerian approach represents the characteristics of
the population mean rather than describing intrapopulation vari-
ability, a representative buoyant velocity of 90 lm/s was used in
ETM. This value represented the majority (70%) of the measured
buoyant velocities based on the frequency distribution histogram
of estimated buoyant velocity described in Rowe et al. (2016).
Additionally, Zhou et al. (2023) reported a detailed sensitivity anal-
ysis (Zhou et al. 2023, Sections 1, 2, and 3 in ESM) of buoyant veloc-
ities for the CHAB biomass forecast. They used a high buoyant
velocity of 180 lm/s (representing Microcystis colonies with large
diameters) and non-buoyant velocity cases to compare with the
model forecast using a buoyant velocity of 90 lm/s that repre-
sented 70% of the measured buoyant velocities based on the fre-
quency distribution histogram. The results confirmed that using a
representative buoyant velocity of 90 lm/s provided the best
model performance in the sensitivity analysis of buoyant
velocities.

Microcystin production function

The changes in MC concentration caused by biological processes
during the model simulation were calculated using the following
equation.

MCt ¼ el�tþlnðMC0Þ ð2Þ
where MCt and MC0 are the microcystin concentrations (lg/L) at
time t and time 0 (model start time), respectively. t is the simula-
tion time (day). l is the intracellular microcystin production rate
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constant (/day). A positive rate indicates a net production of MCs
by algal cells, whereas a negative value indicates a net loss of
MCs due to degradation. l values for each week were determined
from a microcosm study that quantified MC production biweekly
throughout the 2018 and 2019 CHAB seasons (Chaffin et al., 2022)
(ESM Table S1). Briefly, l was quantified for CHAB collected at
two sites in the western basin (Maumee Bay and an offshore site)
at ambient nutrient and elevated phosphorus and nitrogen condi-
tions and at in situ temperature and light conditions (Fig. 1d). The
‘‘actual” l might be somewhere in the middle between ambient
and elevated conditions. Because the ‘‘actual” l was not quantified,
we used the averaged l value from the ambient and elevated nutri-
ent conditions for ETM simulations. In addition, we conducted two
sensitivity analyses using the lower and higher quartiles from the
range of l values between ambient and elevated nutrient condi-
tions to identify the uncertainty in the MC production rate and
the sensitivity of model performance to the MC production rate
(ESM Fig. S6). We used l from the site in Maumee Bay for areas
within 20 km of the Maumee River mouth and l from the offshore
site to represent the rest of the basin (Fig. 1d). Because l was mea-
sured biweekly, we used the l value determined closest to the sim-
ulation start date.

Initial vertical distribution of microcystins

The short-term forecast of CHAB biomass and MC concentration
is sensitive to the initial vertical distribution of CHABs. In the mod-
eling of CHAB biomass forecast, remotely sensed surface chloro-
phyll concentrations can be used to improve the initial condition
of the model by applying it to the surface mixed layer (Rowe
et al., 2016; Soontiens et al., 2019; Zhou et al., 2023). However,
the MC concentration map generated here is based on in situ data
collected from all water layers due to the limited observational
data. The best approach to initializing model vertical distribution
with limited observations is still unknown, but the desired metric
to track is the total mass of toxins in the full water column. Water
intakes generally draw in a well-mixed water column sample that
is not affected by surface scums. In this study, we tested the perfor-
mance of the model by initializing the model under two mixing
conditions: (1) distributing the initial microcystin from an MC con-
centration map throughout the entire water column, and (2) dis-
tributing the initial microcystin from an MC concentration map
within the surface-mixed layer. Following Rowe et al. (2016), we
conducted one-dimensional (1D) simulations to estimate the SML
depth in 33 selected locations, providing representative coverage
of the most common CHAB regions and an additional three stations
in the deeper areas. Each 1D simulation was initialized with 1000
neutrally buoyant particles uniformly distributed throughout the
water column. The simulation was set to run from 48 h before
the initialization time of each ETM simulation up to the initializa-
tion time to allow the particle distribution sufficient time to adapt
to the varying diffusivity. The SML depth was then estimated as the
depth at which the 1D concentration profile decreased to half the
surface concentration and was interpolated spatially to the ETM
nodes by the nearest neighbor method (Rowe et al., 2016).

Design of numerical experiments

The numerical experiments were designed in two parts. In the
first part, we focused on the specific event of the HABs Grab (a
one-day sampling on August 7th, 2019) that had high spatial reso-
lution and coverage of MC measurements during a severe bloom in
the western basin. For this event, we conducted two ETM simula-
tions (including or excluding MC production) from July 29th to
August 7th to analyze the impact of hydrodynamic transport and
MC production on the spatial variability of MCs. We initialized
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the model with the latest available MC map (on July 29th) before
the 2019 HABs Grab. For the ETM simulation including MC produc-
tion, we used the average of the MC production rates measured for
microcosm water collected on July 16th and August 13th for the
area within 20 km of the Maumee River mouth. As there was no
sampling event for microcosm water at the Maumee Bay site that
was close to July 29th, we used the MC production rate measured
on microcosm water from the offshore site collected on July 30th
for the rest of the basin.

In addition, we conducted a numerical Lagrangian particle
tracking experiment to demonstrate the flow patterns that impact
the transport of microcystins (MCs) by displaying the trajectories
of fluid particles released from five representative regions on July
29th, 2019 (Fig. 3a). For the particle tracking experiments, we ran-
domly released 60,000 particles in the western basin of Lake Erie
from 8:00–16:00 on July 29th and tracked them until August 7th.
We calculated particle trajectories using 3D flow fields simulated
by LE-FVCOM. It is important to note that the objective of the par-
ticle tracking experiments was to illustrate the flow patterns and
facilitate understanding of the role of hydrodynamic transport in
affecting MC distribution; therefore, the particles in the simulation
represent flow parcels rather than MC concentration. Spatiotempo-
ral changes in MC concentration were all simulated using the ETM.
Particles were randomly released within the water column. Note
that we did not incorporate the random-walk process into the par-
ticle tracking, and therefore the turbulent mixing processes were
not represented in the particle tracking. As a result, the particle
trajectories only represent advection by currents. Ideally, the
random-walk process should also be included for the most accu-
rate representation of particle tracking.
Fig. 2. (a) An MC concentration map generated from multiple MC data sources for July
August 7th, 2019. This MC concentration map was used to initialize the ETM simulation
Grab. Black dots on the maps ([a] and [b]) represent the sampling locations on those days
2 m depth on the HABs Grab day from the ETM with MC production (WMC, panel c) an
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In the second part of the numerical experiments, we focused on
analyzing the statistical skill of the ETM modeled seven-day fore-
cast performance in simulating all weekly grab samples during
the 2018 and 2019 CHAB seasons. We conducted four types of
ETM simulations to determine the role of physical transport and
biological processes in explaining the short-term variability of
MCs and to test the model sensitivity to different initial vertical
distributions of MCs. The ETM simulations were designed with
two types of initial MC mixing conditions: (1) initializing the
ETM by applying MC maps within the surface-mixed layer (re-
ferred to as the SML model); and (2) initializing the ETM by apply-
ing MC maps throughout the entire water column (referred to as
the WC model). Simulations for each mixing condition included
two scenarios: one that incorporated microcystin production rates
into hydrodynamic transport, and another that did not. In each
type of experiment, we conducted 25 individual simulations cover-
ing the 2018 and 2019 CHAB seasons. Each simulation ran for
7 days or longer to reach the time point of the subsequent available
observation data for model-data comparison (data were from the
HABs Grab event and GLERL weekly sampling). Occasionally, model
simulations were performed for longer than seven days when the
GLERL weekly sampling was not sampled on Mondays due to incle-
ment weather.

Model assessment

Model performance was evaluated using confusion matrices. A
confusion matrix displays four possible conditions including true
positives, true negatives, false positives), and false negatives. Con-
fusion matrices have proven useful for evaluating and communi-
29th, 2019. July 29th is the latest available observation prior to the HABs Grab on
(b) An MC concentration map generated based on the observation data from HABs
, respectively. (c) and (d): Simulated average MC concentrations from the surface to
d without MC production (WOMC, panel d).



Fig. 3. (a) Trajectories of fluid particles released from five representative regions (marked in different colors) over the MC map on July 29th, 2019 (Fig. 2a) to show the impact
of hydrodynamic transport on the spatial distribution of MCs. (b) 10-day mean depth-averaged flow field from July 29th to August 7th, 2019 simulated with LE-FVCOM.
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cating model performance in forecasting algal blooms (Anderson
et al., 2015; Rowe et al., 2016; Liu et al., 2020; Kim et al., 2021).
The model outputs and the observed weekly MC measurements
at the eight GLERL sites were compared to several MC threshold
values. A ±20% buffer range was applied to the model output to
account for the uncertainty of the ELISA method (Qian et al.,
2015) and to avoid being too stringent with the assessment. Each
result was defined as correct if the model output and the observed
MC concentrations were both above (true positive, ESM Fig. S1a) or
both below (true negative, ESM Fig. S1b) the concentration thresh-
old. A false positive occurred when the model output was above
the threshold, but the observed MC concentration was below the
threshold (ESM Fig. S1c), and a false negative corresponded to
the model output being below the threshold but the observed con-
centration being above it (ESM Fig. S1d). When the model outputs
were above (below) the threshold and observed below (above), but
the 20% buffer overlapped both the threshold and the observed MC
concentrations (ESM Fig. S1e and S1f), the model was considered
correct, regarded as true positive (negative). Multiple MC concen-
tration thresholds from different criteria were tested in the skill
assessments to examine the model performance in forecasting dif-
ferent ranges of MC concentrations (0.3, 1.0, 5.0, 10.0, and 20.0 lg/
L). The 0.3 lg/L level was selected because it is the ELISA method
reporting limit (i.e., detectable levels of MC), and 0.3 lg/L is also
the Ohio EPA’s established drinking water threshold of microcystin
concentrations for children under 6 years of age and the group of
sensitive individuals. The value of 1 lg/L is the World Health Orga-
nization MC guideline for drinking water. The upper range limit of
the ELISA test method is 5 lg/L, above which samples require dilu-
tions, and 10 lg/L was selected because it is twice the ELISA range.
The threshold that is often used for the public to avoid all contact
with the water is 20 lg/L.

The confusion matrix was used to evaluate whether the ETM
could capture the observed weekly trend of microcystin concentra-
tions at the eight monitoring sites in the western basin of Lake Erie.
This trend was evaluated based on whether the microcystin con-
centrations increased, decreased, or remained stable from week
to week. The model was considered correct if the modeled micro-
cystin concentrations and observed microcystin concentrations
changed in the same direction (ESM Fig. S2a, d) or if the ±20% buf-
fer on the modeled concentrations overlapped with both the initial
and final observed data (ESM Fig. S2b, e). Conversely, the model
was considered incorrect if the model result and observed data
showed an opposite trend (ESM Fig. S2c, f). In addition, we also
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used a ‘‘persistence” forecast, which assumes a steady MC pattern
over time. The persistence forecast represented the best available
information to forecast for a hypothetical scenario if no new data
were available. By comparing the ETM with the persistence fore-
cast, we could characterize the quality of the additional informa-
tion provided by the ETM.

Paired sample T-tests were conducted for the 0.3 lg/L, 1.0 lg/L,
and trend analysis across all models to determine if there were sig-
nificant differences between the years (2018 and 2019), models
with and without MC production, and the SML and WC models.
Higher concentration thresholds were excluded from this analysis
due to the lack of observed MC exceeding 5 lg/L in the 2018 CHAB
season.
Results

Observed weekly MC data

The MC concentrations observed in 2019 were generally much
higher than those in 2018 (ESM Fig. S3). Despite the concentration
differences, the temporal and spatial patterns observed were sim-
ilar. Both years had low concentrations (<1.0 lg/L) in early July,
and the MC levels began to sharply increase in the last week of July.
The concentrations peaked during August in both years and then
decreased to low levels by late September. In 2018, only one sam-
ple exceeded 5 lg/L, whereas in 2019, there were 26 samples
above 5 lg/L, including six above 10 lg/L. The sample sites closest
to the Maumee River (WE6, 9, 2) had higher concentrations than
the sites furthest from shore (WE4 and WE13).
HABs Grab

The HABs Grab provided us with a unique opportunity to ana-
lyze the impact of hydrodynamic transport and MC production
on the spatial variability of MCs in the western basin of Lake Erie,
thanks to its sufficiently high spatial resolution and coverage. To
discuss the evolution of MCs, we included the latest available MC
map (Fig. 2a) from before the HABs Grab and the spatial distribu-
tion of MCs during the HABs Grab (Fig. 2b). On July 29th, observa-
tions showed that high MC concentrations (2–5 lg/L) originated
near the west shore of the western basin and extended to the cen-
ter of the western basin, with a decrease of MC concentrations to
1–2 lg/L. On the HABs Grab day, the highest MC concentrations
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(>20 lg/L) were measured in the region near the mouth of the
Maumee River, and concentrations decreased along the south
shore with increasing distance to the east. A ‘‘finger-shaped” MC
plume (1–5 lg/L) was observed in the center of the western basin,
pointing to the north shore of the western basin. The ‘‘finger” and
the high MC concentrations on the west shore of the western basin
formed a semi-circular front surrounding the outflow from the
mouth of the Detroit River.

A 10-day numerical Lagrangian particle tracking experiment
was conducted to identify the impact of hydrodynamic transport
on the spatial distribution of MCs. Particles were released in five
representative regions, marked in different colors, to reveal how
hydrodynamic transport affected their distribution (Fig. 3a). The
Detroit River outflow influenced the transport, which first flowed
southward in the northern part of the basin and then turned coun-
terclockwise to the northeast to exit the western basin through the
passage to the north of Pelee Island (Fig. 3b). Water currents trans-
ported particles released in the brown and red rectangles (center
and northern areas of the basin, respectively) further east and to
the Canadian coast, respectively, corresponding to the ‘‘finger‘‘ pat-
tern on August 7th. Due to the low current speed at Maumee Bay
(Fig. 3b, western corner of the basin), most of the particles released
in Maumee Bay (black rectangle) remained in this region, with a
small portion of particles moving northward along the western
shoreline of the basin. The high residence time in Maumee Bay pro-
vided favorable conditions to accumulate and retain high MC con-
centration due to MC production in this region. Particles released
in the northwest area (purple rectangle) moved slightly southward
but were not carried eastward like the particles in the red rectan-
gle, indicating the two close regions belong to two different flow
regimes. The movement of particles released in the red and purple
regions explained the formation of a steep concentration gradient
of MC at 41.70–41.95 degrees latitude and �83.2 degrees longi-
tude. Most of the particles released in the southern area (blue rect-
angle) stayed inside the blue rectangle due to the low current
speed and spread out in all directions. One small portion of parti-
cles moved northward and joined the extension of the ‘‘finger”.
Another small portion moved southeastward along the coast,
explaining the observed extension of MC along the south coast.

In addition to the Lagrangian particle tracking experiment, the
two ETM simulations (with and without MC production) success-
fully predicted the ‘‘finger” and semi-circular shaped front of
MCs (Fig. 2c and d). The main difference between the two simula-
tions was the concentration of MCs in Maumee Bay. Only the
model with MC production (‘‘WMC”) predicted high MC concentra-
tions (>20 lg/L, Fig. 2c) that were consistent with the observed MC
(Fig. 2b). The model without MC production (‘‘WOMC”) predicted
MC concentrations of less than 5 lg/L in Maumee Bay (Fig. 2d).
Weekly MC forecast skill assessment

Statistical skills were summarized by confusion matrices to
evaluate model performance in forecasting different levels of MC
concentrations and weekly trends. Each comparison between
model-predicted and observed (measured at 8 GLERL sites) MC
concentrations in the 2018 and 2019 CHAB seasons was classified
into correct (true positive and true negative) and incorrect (false
positive and false negative) conditions and marked in correspond-
ing colors (Figs. 4–7). The accuracy was calculated as the ratio of
correctly classified events to the total number of events for each
case and each site (listed on the X-axis and Y-axis of Figs. 4–7,
ESM Figs. S4–S5), and each CHAB season (Table 1 and ESM
Table S2). This allowed for a better evaluation of model perfor-
mance in space and time.
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0.3 lg/L threshold
The WC model with MC production (WC-WMC) had the highest

accuracy at the 0.3 lg/L thresholds, with 85.4%, 94.2%, and 90.0% in
2018, 2019, and both years combined, respectively (Table 1). The
WC-WMC model performed 8.3% to 8.6% better than the SML-
WMC model, which involved initializing the model by applying
MC concentration maps within the surface mixed layer and simu-
lating MC production. The WC-WOMC model, which did not
include microcystin production, was about 10.6% to 20.8% better
than the SML-WOMC model. The WMC models outperformed the
WOMC models, with a difference of 8.3% to 20.8%. Generally, sim-
ulations at sites closer to the Maumee River (Sites WE9, 6, 2, 8, and
12) were more accurate than those further offshore (Fig. 4). Site
WE4, the northernmost site, and more influenced by the Detroit
River than the Maumee River (Fig. 1c), had the lowest accuracy
within every model simulation (Fig. 4) due to the highly dynamic
movement of the HAB front. Across all sites and models, among
the incorrect results, there was a general pattern of more false neg-
atives in the early bloom season and more false positives at the end
of the year.

1.0 lg/L threshold
In 2018, at the 1.0 lg/L threshold, the persistence model had

the highest accuracy (84.4%), which was 9.4% higher than any other
model configuration (Table 1). Among the four experiments in
2018, the WC-WOMC model was the second-most accurate
(75.0%). The two WMC models (with MC production) generated a
combined 14 false positives in July 2018, whereas the two WOMC
and persistence models generated only one false positive com-
bined, showing that the WMC models were less accurate in 2018
(a small bloom year) (Fig. 5).

In 2019, which was a big bloom year, the WC-WMC model had
the highest accuracy rate of 87.5%, which was 2.9% better than
other models (as shown in Table 1). However, the two WOMC
and persistence models had lower accuracy rates in 2019 due to
generating more false negatives during July and early August com-
pared to the WMC models. During the peak bloom of 2019 (be-
tween August 5th and August 19th simulation start times), all
models had a high accuracy rate ranging from 75% to 100% for
comparison times. However, all models had false positives at the
end of the 2019 bloom (on September 3rd and September 24th).
There were no apparent spatial patterns in accuracy.

5, 10, and 20 lg/L thresholds
Evaluating higher concentration thresholds for 2018 is compli-

cated by the fact that, except for WE16 on August 20, all other sam-
ples had MC concentrations less than 5.0 lg/L (Fig. 6). Throughout
the CHAB season, the WOMC and persistence models accurately
predicted true negatives for all eight sites, with a 99% accuracy
rate. The WC-WMC model, on the other hand, generated 12 false
positives, indicating that the model forecast MCs to exceed
5.0 lg/L 12 times, but the observed value was less than 5.0 lg/L
(Fig. 6). The SML-WMC model generated only one false positive
(Fig. 6).

In 2019, the persistence model had the highest accuracy, but
the WC-WMC model’s accuracy was only 1% lower than that of
the persistence model (Table 1). The SML-WMC model had an
accuracy of 83.7% in 2019, while the WC-WMCmodel had an accu-
racy of 87.5%, which was 15.4% better than the WOMC counterpart
models. However, the SML-WOMC model only correctly predicted
2 out of 35 observations that exceeded 5.0 lg/L, and the WC-
WOMC model only correctly predicted 7 out of 35 observations
for the 2019 CHAB season. In contrast, the SML-WMC model cor-
rectly predicted 20 out of 35 observations that exceeded 5.0 lg/
L, which is 57.1%, and the WC-WMC model correctly predicted
26 out of 35 observations, which is 74.3% (Fig. 6).



Fig. 4. Summary confusion matrix of the model assessment at the 0.3 lg/L thresholds. Dark blue = model was correct (true positive) in that both the output and observed
microcystin concentrations were above 0.3 lg/L, or the model output was above the threshold and observed below, but the 20% buffer overlapped both the threshold and the
observed MC concentration. Light blue = model was correct (true negative) in that both the output and observed microcystin concentrations were below 0.3 lg/L. Dark
gray = model was incorrect (false positive) in that the model was above 0.3 lg/L while the observed was below. White = model was incorrect (false negative) in that the model
output was below 0.3 lg/L but observed was greater. The percentages listed on the X-axis and Y-axis are the accuracy (dark and light blue grids) for each date (across all sites)
and each site (across all dates). The Y-axis is arranged from the site farthest from the Maumee River (WE16) to the closest (WE9). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. As Fig. 4 caption, but at the 1.0 lg/L threshold.
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At the 10 lg/L threshold, the SML-WMC model correctly fore-
casted that the concentration would exceed 10 lg/L in 5 out of 9
observations. The WC-WMC model correctly forecasted this in 7
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out of 9 observations. However, the WOMC models missed every
instance of MC exceeding 10 lg/L, and the persistence model only
correctly predicted one instance of MC exceeding 10 lg/L (ESM



Fig. 6. As Fig. 4 caption, but at the 5.0 lg/L threshold.
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Table 1
The accuracy of the four experiments and persistence model for the 2018 and 2019 season at the 0.3 lg/L, 1.0 lg/L, and 5.0 lg/L microcystin concentrations thresholds and the
trend analysis. The model with the highest accuracy is bolded and underlined. SML = initial microcystins were mixed within the surface mixed layer for the initial conditions;
WC = initial microcystins were mixed throughout the entire water column; WMC = ETM simulations with microcystin production; WOMC = ETM simulations without microcystin
production.

Threshold Year SML-WMC SML-WOMC WC-WMC WC-WOMC Persistence model

0.3 lg/L 2018 77.1% 56.3% 85.4% 77.1% 79.2%
2019 85.6% 75.0% 94.2% 85.6% 89.4%
Both years 81.5% 66.0% 90.0% 81.5% 84.5%

1.0 lg/L 2018 74.0% 67.7% 67.7% 75.0% 84.4%
2019 81.7% 71.2% 87.5% 80.8% 84.6%
Both years 78.0% 69.5% 78.0% 78.0% 84.5%

5.0 lg/L 2018 97.9% 99.0% 86.5% 99.0% 99.0%
2019 83.7% 68.3% 87.5% 72.1% 88.5%
Both years 90.5% 83.0% 87.0% 85.0% 93.5%

Trend analysis 2018 56.3% 53.1% 63.5% 59.4% NA
2019 82.7% 62.5% 86.5% 64.4% NA
Both years 70.0% 58.0% 75.5% 62.0% NA
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Fig. S4). There were only two instances of MC concentrations that
exceeded 20 lg/L, and both WMC models correctly forecasted
those instances, while the WOMC models did not (ESM Fig. S5).
However, both WMC models generated several false positives for
MC concentrations that did not exceed 20 lg/L.

Trend analysis
For trend analysis, the WC-WMC model showed the highest

accuracy, achieving 63.5%, 86.5%, and 75.5% in 2018, 2019, and
both years combined, respectively. This was between 3.8% and
5.5% better than the next most accurate model, as shown in Table 1.
The SML-WMC model, on the other hand, outperformed the SML-
WOMC models by 3.2% and 20.2% for 2018 and 2019, respectively.
Similarly, the WC-WMC model was 4.1% and 22.1% more accurate
than the WC-WOMC models (Table 1).

Across all models (except the persistence model), site WE9,
which is the closest site to the Maumee River, had the most correct
predictions (76%-80% accuracy). On the other hand, site WE2,
located in the transition zone between the nutrient-rich waters
of Maumee Bay and the lower-nutrient waters further into the
basin, had the lowest accuracy (44%-60%) (Fig. 7a–d). Of particular
interest is site WE12, which is located near the City of Toledo’s
drinking water intake. The WC-WMC model had an overall accu-
racy of 88%, including 100% accuracy for 2019.

The persistence model would only be correct in trend analysis if
observed MC concentrations changed by less than 20% from week
to week. However, the persistence model mostly produced false
positives and false negatives as shown in Fig. 7e. In the latter half
of both years, the persistence model had more false negatives due
to the declining observed MC concentrations. Overall, the model
had an accuracy range of 12% to 36% across all sites, indicating that
MC concentrations vary by more than 20% from week to week.

Model scenario comparison

Across all models for the 0.3 lg/L, 1.0 lg/L, and trend analysis,
the models had an accuracy of 69.7% (±one standard error of 2.9%)
in 2018 and 80.8% (±2.5%) in 2019 (Fig. 8a). According to the paired
sample T-test (p < 0.001, t = �5.358, df = 13), this difference was
Fig. 7. Summary confusion matrix of the model assessment for the trend analysis.
blue = model was correct (true positive) in that both the output and observed microcys
both the output and observed microcystin concentrations decreased. Purple = MC con
increase or decrease within the allowed buffer, and the model was considered corre
microcystin concentration while observed decreased. White = model was incorrect (false
concentration increased. For the persistence model, the purple color showed the observe
gray showed the observed data increased more than 20% from the previously observed da
from the previously observed data (false negative). The percentages listed on the X-axis a
and each site (across all dates). The Y-axis is arranged from the site furthest from the Mau
in this figure legend, the reader is referred to the web version of this article.)
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significant. The models with MC production rate incorporated were
significantly more accurate (78.5%) than models without MC pro-
duction incorporated (69.1%) (p = 0.002; t = 3.934; df = 11;
Fig. 8b). Additionally, the WC models (77.3%) were significantly
more accurate than SML models (70.3%) (p = 0.003; t = �3.882;
df = 11; Fig. 8c).
Discussion

Influences of hydrodynamic transport and MC production on MCs
estimation

Our work has revealed that both hydrodynamic transport and
MC production are important in predicting MC concentrations. As
shown by our HABs Grab day simulation, models with MC produc-
tion agreed with the high MC concentrations observed (>20 lg/L)
in Maumee Bay, whereas models without MC production failed
to reproduce these high concentrations. Furthermore, all models
correctly predicted that water currents would transport the MCs
to less commonly affected locations (e.g., northward in Fig. 2c, d),
highlighting the importance of hydrodynamic transport of MCs.
Our statistical skill assessment over all 2018 and 2019 simulations
showed that models without MC production (WOMC) were 69%
correct on average, indicating that hydrodynamic transport alone
can be used to forecast MC concentrations 7 days into the future.
However, incorporating MC production (WMC) rates into the
hydrodynamic transport of MCs improved the models by 10%.
Additionally, only the models with MC production correctly fore-
casted MC concentrations greater than 5 lg/L during the large
bloom year, but incorrectly forecasted concentrations greater than
5 lg/L (false positives) during the small bloom year. While our
study was the first to demonstrate the impact of incorporating bio-
logical rates into models on CHAB toxin forecasts, it is important to
consider spatial patterns (nearshore vs. offshore), yearly differ-
ences (in bloom size), and seasonality (early bloom, peak bloom,
and late bloom) when interpreting spatial and temporal modeling
results for a large system like western Lake Erie.
For the ETM simulation (SML-WMC, SML-WOMC, WC-WMC, WC-WOMC), Dark
tin concentrations increased. Light blue = model was correct (true negative) in that
centrations on the simulation start date and final were within 20%, indicating no
ct. Dark gray = model was incorrect (false positive) in that the model increased
negative) in that the model decreased microcystin concentration, but the observed
d data changed less than 20% from the previously observed data (correct), the dark
ta (false positive), and the white showed the observed data decreased more than 20%
nd Y-axis are the accuracy (dark and light blue grids) for each date (across all sites)
mee River (WE16) to the closest (WE9). (For interpretation of the references to color



Fig. 8. Average accuracy (±one standard error) for all models in the 0.3 lg/L, 1.0 lg/L, and the trend analysis for (A) 2018 and 2019, (B) with and without microcystin
production rates, (C) and water column mixing scenario.
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Spatial patterns

Site WE9 is located only � 5 km from the Maumee River. While
the nutrient concentrations and water temperatures at this site
favor cyanobacterial growth, the overall cyanobacterial biovolume
can be low compared to other sites (Bridgeman et al., 2013) due to
water currents from the Maumee River preventing the high accu-
mulation of cyanobacteria. During the peak bloom period of
2018, the Maumee Bay area had a low retention time (Chaffin
et al., 2021), which resulted in low MC concentrations (ESM
Fig. S3) due to flushing. Additionally, in most cases, Maumee River
Microcystis are not capable of producing microcystins (Kutovaya
et al., 2012). In contrast, during the peak bloom in 2019, Maumee
Bay had long retention times (Chaffin et al., 2021), allowing MCs to
accumulate to high concentrations (up to 45 lg/L, ESM Fig. S3).

Site WE2 is located in the transition zone between the nutrient-
rich waters of Maumee Bay and the lower-nutrient waters further
into the basin (refer to Fig. 1c). This zone has high nutrient concen-
trations and more favorable light conditions than the shallowMau-
mee Bay (less than 2 m) due to turbidity and increased depth (4–
6 m), which allow for high cyanobacterial growth rates (Chaffin
et al., 2011). Site WE2 frequently showed high accuracy in the
threshold analyses (Figs. 4–6), but the worst accuracy in the trend
analysis, with less than or equal to 60% correct predictions (Fig. 7).
The difference can be explained by the consistently high micro-
cystin levels but variable concentrations from week to week at
WE2 (ESM Fig. S3). Therefore, MCs were consistently above the
thresholds, but the direction of change was more difficult to pre-
dict from week to week.

WE12 is important due to its proximity to the City of Toledo’s
drinking water intake, which is approximately 0.6 km away. The
WC-WMCmodels at this site were accurate, with a correctness rate
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of at least 88% for all thresholds and trend analyses. Additionally,
the models with MC production at WE12 ranked among the top
three highest accuracies compared to the other sites. This high
accuracy may be attributed to the significant amount of MC data
available in a small area around the intake, which was used to ini-
tialize the simulations. The City of Toledo collected MC data daily
from the intake, while NOAA GLERL, University of Toledo, and char-
ter boats collected samples weekly around the intake. The results
at WE12 demonstrate that a higher density of input data can lead
to more accurate forecasts.

2018 vs 2019 – low MCs vs high MCs

Much higher MC concentrations (ESM Fig. S3) and cyanobacte-
rial biomass (Chaffin et al., 2021) were observed in the western
basin of Lake Erie in 2019 compared to 2018. Across all models
for the 0.3 lg/L, 1.0 lg/L, and trend analysis, the high MC year of
2019 had significantly more accurate results than 2018 (Table 1).
These results suggest that forecasting MCs may be easier when
concentrations are relatively higher when weekly data is available.
Severe blooms usually occur in a larger area and last longer, which
can be easily captured by weekly observations from a few sites in
the western basin. In contrast, small blooms cover a smaller area
and have a shorter duration, making them easy to miss when sam-
pling at limited stations. Therefore, ETM performed well in the big
bloom year with sufficient data to initialize the model, but failed in
the small bloom year.

There were also differences between years regarding models
with and without MC production rates. During the low MC year
of 2018, the WMCmodels had more false positives than theWOMC
models. For example, at the 1.0 lg/L threshold, the WC-WMC
resulted in 26% false positives (25 out of 96 results were false pos-
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itives), while the WC-WOMC resulted in only 9.4% (9 out of 96)
false positives (Fig. 5). On the other hand, during the high MC year
of 2019, the WC-WMC model resulted in 5.7% (6 out of 104) false
negatives, while the WC-WOMC model resulted in 15.4% (16 out
of 104) false negatives. Similar results were observed in the trend
analysis. In 2018, the WC-WMC model gave 27.1% (26 out of 96)
false positives, whereas the WC-WOMC model gave 8.3% (8 out
of 96) false positives. At the 5 lg/L thresholds, the results with
and without MC production also differed between the two years,
with false positives in theWMCmodels in 2018 and false negatives
in the WOMC models during 2019 (Fig. 6). The false positives in
2018 suggest that our estimate of MC production was too high.
We used the average MC production rates reported in microcosms
with ambient nutrients and elevated nutrients (Chaffin et al.,
2022). The false positives from the WMC models in 2018 may indi-
cate that in situ MC production was closer to that reported in the
ambient nutrient treatments than the average of the ambient
and elevated nutrient treatments.
Seasonal effect – early bloom, peak bloom, late bloom

There was a distinct temporal pattern in the results. In early July
of both years, all sites had low MCs (<2 lg/L) and most samples
were below detection (0.3 lg/L) or 1.0 lg/L (ESM Fig. S3). MC con-
centrations increased in late July, remained relatively high (com-
pared to early summer) during August, and then decreased in
September. If we apply the general definition of ‘‘early bloom” to
the first three simulations from early July to mid-July of both years,
‘‘peak bloom” to the simulation from late July (starting from July
30th, 2018 or July 29th, 2019) to August, and ‘‘late bloom” to the
simulations in September, the seasonal patterns become more
apparent. In threshold analyses, the models without MC produc-
tion and the persistence model had more false negatives during
the early bloom, especially for 2019, whereas the models with
MC production more correctly captured MCs exceeding 0.3 lg/L
and 1.0 lg/L during the early bloom, indicating the importance
of biological factors in early bloom forecasting (Figs. 4, 5). Across
all models, the peak bloom period had the most correct model
results compared to the early bloom and late bloom. The late
bloom had more false positives than the early bloom at 0.3 lg/L
and 1.0 lg/L (apart from the false positives in the WMC 2018 mod-
els discussed above).

Microcystins concentrations during the early bloom period
were characterized by false negatives in the models without MC
production, indicating the challenge for models to capture toxin
concentrations during the initiation of the bloom. Microcystis over-
winters on the lake bottom (Preston et al., 1980; Kitchens et al.,
2018) and passively inoculates the water column (via wind resus-
pension) when water temperature, light, and nutrients allow for
growth (Reynolds and Bellinger, 1992; Verspagen et al., 2004).
Other models of Lake Erie HABs also struggle to capture bloom ini-
tiation (transition from diatoms to cyanobacteria), which is cur-
rently puzzling because there is a lag period between nutrient
loading in the spring and the summer occurrence of HABs
(Stumpf et al., 2012). For example, the process-based Western Lake
Erie Ecosystem Model (WLEEM) factors in hydrology, internal and
external nutrient loads, and weather and predicts HAB biovolume,
but the model incorrectly initiates the HAB early by up to one
month (Verhamme et al., 2016). Recently, the model of Del
Giudice et al. (2021) suggested that Lake Erie HABs can initiate
one month after the lake has reached 20℃ due to a reduction in
grazing. Our models relied only on weekly observed MC data,
water currents, and measured rates of MC production, and did
not account for bloom initiation triggers or benthic recruitment
throughout the simulation week. A better understanding of bloom
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initiation triggers is needed to forecast better when a HAB will
begin.

The late bloom period was characterized by false positives,
which resulted from decreased observed MC concentrations, but
the models forecast an increase in concentration when incorporat-
ing the prescribed MC production rates. Cooler water temperatures
associated with the late bloom bring about bloom demise as the
Microcystis colonies settle to the lake bottom (Thomas and
Walsby, 1986; Visser et al., 1995; Verspagen et al., 2005). Addition-
ally, cyanophages can infect the Microcystis cells in the water col-
umn leading to cell lysis and releasing MCs from cells to the
aqueous environment (McKindles et al., 2020). Once MCs are out-
side of the cell, they can be rapidly degraded by heterotrophic bac-
teria (Mou et al., 2013; Thees et al., 2019). Hence, colony settling
and cell lysis followed by MC degradation will decrease MC con-
centrations. These biological factors were not accounted for in
our models, and phage infection and cell lysis were not quantified
in the experiments (Chaffin et al., 2022). A better understanding of
bloom demise and triggers of cell lysis are needed to inform pre-
dictive models better during the late bloom period.
Water column vs surface-mixed layer

In CHAB biomass forecast modeling, several studies have shown
that the application of surface chlorophyll concentrations to the
surface mixed layer to generate model initial conditions produces
the highest accuracy in model simulations (Rowe et al., 2016;
Soontiens et al., 2019). Furthermore, Zhou et al. (2023) evaluated
multiple models using this approach and confirmed that the ETM
performance was the best. However, in our case, the ETM simula-
tion by applying an MC concentration map throughout the entire
water column (WC model) as an initial MC condition performed
significantly better than SML models, on average, at predicting
MC concentrations (Fig. 8).

While there is no consistent relationship between chlorophyll a
concentration (or another metric for HAB biomass) and MC con-
centrations (Stumpf et al., 2016), and most (>95%) of MCs are intra-
cellular (Dyble et al., 2008; Palagama et al., 2020), it should be
expected that MCs and chlorophyll are positioned similarly in the
water column. The differing results between WC vs. SML models
for MCs (our study) and chlorophyll (Rowe et al., 2016; Soontiens
et al., 2019) are due to the data source used to initialize the simu-
lations. Rowe et al. (2016), Soontiens et al. (2019), and Zhou et al.
(2023) used remote sensing surface chlorophyll concentrations,
whereas our MC concentrations were measured on water column
integrated samples. It is dynamically consistent to apply such sur-
face data to the surface mixed layer. Applying surface chlorophyll
data to the entire water column would overestimate the water col-
umn concentration during surface scums. In addition, the remote-
sensed data were available at much higher spatial (300 m) and
temporal resolutions (every few days). As a result, the ETM simu-
lation showed close agreement with the observed chlorophyll spa-
tiotemporal pattern (Zhou et al., 2023). Unfortunately,
measurements for MC concentrations were much more limited.
As wementioned before, the MC concentration had to be generated
by compiling all available data that were measured at different lay-
ers of water columns. In this case, applying the initial MC concen-
tration to the entire water column resulted in a relatively better
performance.

Therefore, it is critical to understand that the performance of
the WC and SML models is affected by how the observed data were
collected. Ideally, it would be most appropriate to separate the
observational data into near-surface data to be applied to the sur-
face mixed layer and apply the rest of the data to the layer below
the surface to generate the initial MC condition. However, this
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would require a significant amount of data, which is not feasible
based on current data availability.
Conclusion

Forecasts of MC concentrations in Lake Erie would be useful for
beach managers and drinking water treatment plant operators
when making decisions on beach closures and water treatment,
respectively. In this study, we developed a novel approach to hind-
cast MC concentrations for Lake Erie by using a compilation of
weekly maps of MC concentrations created from multiple sources
of analytical data, a hydrodynamic model, and an Eulerian tracer
model. The model results revealed that both hydrodynamic trans-
port and MC production were essential in predicting MC concen-
trations, which differs from the assumption in CHAB biomass
forecasts that physical transport models largely explain the
short-term variability of CHAB biomass (Rowe et al., 2016). With
very limited data to initialize the ETM, no single model configura-
tion consistently provided more accurate results. Therefore, one
must consider all models (with and without MC production, SML
vs. WC, including other forecasts developed by other researchers)
when making management decisions in an ensemble modeling
approach. It is also important to consider the variable performance
of different model configurations in different parts of the basin.

The major limitation is that we currently lack accurate, high
spatial resolution MC concentration data to initialize ETM. Our
model predictions would likely be improved with more accurate
initial conditions in 3-D space, as was shown for the HABs Grab.
Until recently, the City of Toledo collected daily MC concentration
data, but reduced monitoring to weekly samples to meet changing
Ohio EPA compliance requirements. We argue that high-spatial
resolution, along with high-temporal sampling frequency, MC data
are useful for hindcasting and developing models. These extra daily
samples could be stored frozen and analyzed in batches at the end
of the CHAB season for research purposes.

Furthermore, our models with MC production were limited by
very coarse measurements of MC production (two sites, biweekly).
While the models with MC production sometimes overpredicted
the MC concentrations and resulted in false positives, especially
in 2018, the 10% improvement over models without MC produc-
tion is a promising result indicating that factoring in biology can
improve model forecasts. Likewise, the models would likely be
improved by higher temporal and spatial resolution estimates of
MC production rate.

Moreover, using a buoyancy regulation model instead of a con-
stant buoyant velocity (90 lm/s) is a potential option to improve
our model performance. Medrano et al. (2013) showed that incor-
porating a buoyancy regulation model can more accurately capture
Microcystis aeruginosa’s vertical distribution throughout the water
column and the diurnal variation in MC concentrations. Further-
more, investigating cell lysis to estimate MC biodegradation rates
is another potential option to improve model performance since
MC concentrations resulted from the net effect of production and
degradation.

In conclusion, our modeling approach, and those of others (Liu
et al., 2020, Qian et al., 2021) to MC forecasting, would be
improved with more MC observations and a more comprehensive
understanding of the biological mechanisms related to MCs
through laboratory experiments.
Data and code availability

The OSU, UT, and charter boat captain data can be found on
NOAA’s National Center for Environmental Information (NCEI
Accession 0276941), the NOAA GLERL lab data can be found on
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their website (https://www.glerl.noaa.gov/res/HABs_and_Hypox-
ia/), and the PWS data can be found by downloading it directly
from Ohio EPA (https://epa.ohio.gov/divisions-and-offices/drinking-
and-ground-waters/public-water-systems/harmful-algal-blooms).
The ETM code and configuration used in this study is available
from https://doi.org/10.5281/zenodo.8014770.
Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.
Acknowledgments

This is contribution no. 101 of the Great Lakes Research Center
at Michigan Technological University. The Michigan Tech high-
performance computing cluster, Superior, was used in obtaining
the modeling results presented in this publication. This research
was funded by the National Oceanic and Atmospheric Administra-
tion’s National Centers for Coastal Ocean Science under award
NA17NOS4780186 to the Ohio State University. We thank Felix
Martinez for helpful discussion on how to display our model
results. This is contribution 1069 from NOAA NCCOS awards.
Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.jglr.2023.06.006.
References

Anderson, E.J., Bechle, A.J., Wu, C.H., Schwab, D.J., Mann, G.E., Lombardy, K.A., 2015.
Reconstruction of a meteotsunami in Lake Erie on 27 May 2012: Roles of
atmospheric conditions on hydrodynamic response in enclosed basins. J.
Geophys. Res.: Oceans 120 (12), 8020–8038.

Benjamin, S.G., Weygandt, S.S., Brown, J.M., Hu, M., Alexander, C.R., Smirnova, T.G.,
Olson, J.B., James, E.P., Dowell, D.C., Grell, G.A., Lin, H., Peckham, S.E., Smith, T.L.,
Moninger, W.R., Kenyon, J.S., Manikin, G.S., 2016. A North American hourly
assimilation and model forecast cycle: The Rapid Refresh. Monthly Weather
Rev. 144 (4), 1669–1694.

Bridgeman, T.B., Chaffin, J.D., Filbrun, J.E., 2013. A novel method for tracking
western Lake ErieMicrocystis blooms, 2002–2011. J. Great Lakes Res. 39 (1), 83–
89.

Chaffin, J.D., Bridgeman, T.B., Heckathorn, S.A., Mishra, S., 2011. Assessment of
Microcystis growth rate potential and nutrient status across a trophic gradient
in western Lake Erie. J. Great Lakes Res. 37 (1), 92–100.

Chaffin, J.D., Bratton, J.F., Verhamme, E.M., Bair, H.B., Beecher, A.A., Binding, C.E.,
Birbeck, J.A., Bridgeman, T.B., Chang, X., Crossman, J., Currie, W.J.S., Davis, T.W.,
Dick, G.J., Drouillard, K.G., Errera, R.M., Frenken, T., MacIsaac, H.J., McClure, A.,
McKay, R.M., Reitz, L.A., Domingo, J.W.S., Stanislawczyk, K., Stumpf, R.P., Swan,
Z.D., Snyder, B.K., Westrick, J.A., Xue, P., Yancey, C.E., Zastepa, A., Zhou, X., 2021.
The Lake Erie HABs Grab: A binational collaboration to characterize the western
basin cyanobacterial harmful algal blooms at an unprecedented high-resolution
spatial scale. Harmful Algae 108, 102080.

Chaffin, J.D., Westrick, J.A., Furr, E., Birbeck, J.A., Reitz, L.A., Stanislawczyk, K., Li, W.,
Weber, P.K., Bridgeman, T.B., Davis, T.W., Mayali, X., 2022. Quantification of
microcystin production and biodegradation rates in the western basin of Lake
Erie. Limnol. Oceanogr. 67 (7), 1470–1483.

Chen, C., Liu, H., Beardsley, R.C., 2003. An unstructured grid, finite-volume, three-
dimensional, primitive equations ocean model: application to coastal ocean and
estuaries. J. Atmos. Ocean. Technol. 20 (1), 159–186.

Del Giudice, D., Fang, S., Scavia, D., Davis, T.W., Evans, M.A., Obenour, D.R., 2021.
Elucidating controls on cyanobacteria bloom timing and intensity via Bayesian
mechanistic modeling. Sci. Total Environ. 755, 142487.

Den Uyl, P.A., Harrison, S.B., Godwin, C.M., Rowe, M.D., Strickler, J.R., Vanderploeg,
H.A., 2021. Comparative analysis of Microcystis buoyancy in western Lake Erie
and Saginaw Bay of Lake Huron. Harmful Algae 108, 102102.

Dyble, J., Fahnenstiel, G.L., Litaker, R.W., Millie, D.F., Tester, P.A., 2008. Microcystin
concentrations and genetic diversity of Microcystis in the lower Great Lakes.
Environ. Toxicol. 23 (4), 507–516.

Golnick, P.C., Chaffin, J.D., Bridgeman, T.B., Zellner, B.C., Simons, V.E., 2016. A
comparison of water sampling and analytical methods in western Lake Erie. J.
Great Lakes Res. 42 (5), 965–971.

https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/
https://www.glerl.noaa.gov/res/HABs_and_Hypoxia/
https://epa.ohio.gov/divisions-and-offices/drinking-and-ground-waters/public-water-systems/harmful-algal-blooms
https://epa.ohio.gov/divisions-and-offices/drinking-and-ground-waters/public-water-systems/harmful-algal-blooms
https://doi.org/10.5281/zenodo.8014770
https://doi.org/10.1016/j.jglr.2023.06.006
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0005
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0005
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0005
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0005
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0010
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0010
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0010
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0010
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0010
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0015
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0015
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0015
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0020
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0020
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0020
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0025
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0025
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0025
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0025
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0025
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0025
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0025
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0025
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0030
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0030
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0030
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0030
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0035
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0035
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0035
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0040
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0040
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0040
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0045
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0045
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0045
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0050
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0050
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0050
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0055
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0055
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0055


X. Zhou, J.D. Chaffin, J.F. Bratton et al. Journal of Great Lakes Research 49 (2023) 1029–1044
Harke, M.J., Steffen, M.M., Gobler, C.J., Otten, T.G., Wilhelm, S.W., Wood, S.A., Paerl,
H.W., 2016. A review of the global ecology, genomics, and biogeography of the
toxic cyanobacterium, Microcystis spp.. Harmful Algae 54, 4–20.

Huang, C., Anderson, E., Liu, Y., Ma, G., Mann, G., Xue, P., 2021. Evaluating essential
processes and forecast requirements for meteotsunami-induced coastal
flooding. Natural Hazards, 1–26.

Jetoo, S., Grover, V.I., Krantzberg, G., 2015. The Toledo drinking water advisory:
suggested application of the water safety planning approach. Sustainability 7
(8), 9787–9808.

Kane, D.D., Conroy, J.D., Richards, R.P., Baker, D.B., Culver, D.A., 2014. Re-
eutrophication of Lake Erie: Correlations between tributary nutrient loads and
phytoplankton biomass. J. Great Lakes Res. 40 (3), 496–501.

Kim, J.H., Shin, J.-K., Lee, H., Lee, D.H., Kang, J.-H., Cho, K.H., Lee, Y.-G., Chon, K., Baek,
S.-S., Park, Y., 2021. Improving the performance of machine learning models for
early warning of harmful algal blooms using an adaptive synthetic sampling
method. Water Res. 207, 117821.

Kitchens, C.M., Johengen, T.H., Davis, T.W., 2018. Establishing spatial and temporal
patterns in Microcystis sediment seed stock viability and their relationship to
subsequent bloom development in Western Lake Erie. PloS One, 13(11),
e0206821.

Kutovaya, O.A., McKay, R.M.L., Beall, B.F., Wilhelm, S.W., Kane, D.D., Chaffin, J.D.,
Bullerjahn, G.S., 2012. Evidence against fluvial seeding of recurrent toxic blooms
of Microcystis spp. in Lake Erie’s western basin. Harmful Algae 15, 71–77.

Li, Y., Chen, X., Chen, C., Ge, J., Ji, R., Tian, R., Xue, P., Xu, L., 2014. Dispersal and
survival of chub mackerel (Scomber Japonicus) larvae in the East China Sea.
Ecol. Modell. 283, 70–84.

Liu, Q., Rowe, M.D., Anderson, E.J., Stow, C.A., Stumpf, R.P., Johengen, T.H., 2020.
Probabilistic forecast of microcystin toxin using satellite remote sensing, in situ
observations and numerical modeling. Environ. Modell. Softw. 128, 104705.

Martin, J.F., Kalcic, M.M., Aloysius, N., Apostel, A.M., Brooker, M.R., Evenson, G., Kast,
J.B., Kujawa, H., Murumkar, A., Becker, R., Boles, C., Confesor, R., Dagnew, A., Guo,
T., Long, C.M., Muenich, R.L., Scavia, D., Redder, T., Robertson, D.M., Wang, Y.-C.,
2021. Evaluating management options to reduce Lake Erie algal blooms using
an ensemble of watershed models. J. Environ. Manage. 280, 111710.

McKindles, K.M., Manes, M.A., DeMarco, J.R., McClure, A., McKay, R.M., Davis, T.W.,
Bullerjahn, G.S., 2020. Dissolved microcystin release coincident with lysis of a
bloom dominated by Microcystis spp. in western Lake Erie attributed to a novel
cyanophage. Appl. Environ. Microbiol. 86 (22), e01397–e01420.

Medrano, E.A., Uittenbogaard, R.E., Pires, L.D., Van De Wiel, B.J.H., Clercx, H.J.H.,
2013. Coupling hydrodynamics and buoyancy regulation in Microcystis
aeruginosa for its vertical distribution in lakes. Ecol. Modell. 248, 41–56.

Mou, X., Lu, X., Jacob, J., Sun, S., Heath, R., 2013. Metagenomic identification of
bacterioplankton taxa and pathways involved in microcystin degradation in
Lake Erie. PLoS One, 8(4), e61890.

Palagama, D.S., Baliu-Rodriguez, D., Snyder, B.K., Thornburg, J.A., Bridgeman, T.B.,
Isailovic, D., 2020. Identification and quantification of microcystins in western
Lake Erie during 2016 and 2017 harmful algal blooms. J. Great Lakes Res. 46 (2),
289–301.

Preston, T., Stewart, W.D.P., Reynolds, C.S., 1980. Bloom-forming cyanobacterium
Microcystis aeruginosa overwinters on sediment surface. Nature 288 (5789),
365–367.

Qian, S.S., Chaffin, J.D., DuFour, M.R., Sherman, J.J., Golnick, P.C., Collier, C.D.,
Nummer, S.A., Margida, M.G., 2015. Quantifying and reducing uncertainty in
estimated microcystin concentrations from the ELISA method. Environ. Sci.
Technol. 49 (24), 14221–14229.

Qian, S.S., Stow, C.A., Rowland, F.E., Liu, Q., Rowe, M.D., Anderson, E.J., Stumpf, R.P.,
Johengen, T.H., 2021. Chlorophyll a as an indicator of microcystin: Short-term
forecasting and risk assessment in Lake Erie. Ecol. Indicat. 130, 108055.

Reynolds, C.S., Bellinger, E.G., 1992. Patterns of abundance and dominance of the
phytoplankton of Rostherne Mere, England: evidence from an 18-year data set.
Aquatic Sci. 54 (1), 10–36.

Rowe, M.D., Anderson, E.J., Wynne, T.T., Stumpf, R.P., Fanslow, D.L., Kijanka, K.,
Vanderploeg, H.A., Strickler, J.R., Davis, T.W., 2016. Vertical distribution of
1044
buoyant Microcystis blooms in a Lagrangian particle tracking model for short-
term forecasts in Lake Erie. J. Geophys. Res.: Oceans 121 (7), 5296–5314.

Rowe, M.D., Anderson, E.J., Vanderploeg, H.A., Pothoven, S.A., Elgin, A.K., Wang, J.,
Yousef, F., 2017. Influence of invasive quagga mussels, phosphorus loads, and
climate on spatial and temporal patterns of productivity in Lake Michigan: A
biophysical modeling study. Limnol. Oceanogr. 62 (6), 2629–2649.

Soontiens, N., Binding, C., Fortin, V., Mackay, M., Rao, Y.R., 2019. Algal bloom
transport in Lake Erie using remote sensing and hydrodynamic modelling:
sensitivity to buoyancy velocity and initial vertical distribution. J. Great Lakes
Res. 45 (3), 556–572.

Steffen, M.M., Belisle, B.S., Watson, S.B., Boyer, G.L., Wilhelm, S.W., 2014. Status,
causes and controls of cyanobacterial blooms in Lake Erie. J. Great Lakes Res. 40
(2), 215–225.

Stumpf, R.P., Davis, T.W., Wynne, T.T., Graham, J.L., Loftin, K.A., Johengen, T.H.,
Gossiaux, D., Palladino, D., Burtner, A., 2016. Challenges for mapping cyanotoxin
patterns from remote sensing of cyanobacteria. Harmful Algae 54, 160–173.

Stumpf, R.P., Wynne, T.T., Baker, D.B., Fahnenstiel, G.L., 2012. Interannual variability
of cyanobacterial blooms in Lake Erie. PLoS ONE 7, (8) e42444.

Thees, A., Atari, E., Birbeck, J., Westrick, J.A., Huntley, J.F., 2019. Isolation and
characterization of Lake Erie bacteria that degrade the cyanobacterial
microcystin toxin MC-LR. J. Great Lakes Res. 45 (1), 138–149.

Thomas, R.H., Walsby, A.E., 1986. The effect of temperature on recovery of buoyancy
by Microcystis. Microbiology 132 (6), 1665–1672.

Verhamme, E.M., Redder, T.M., Schlea, D.A., Grush, J., Bratton, J.F., DePinto, J.V., 2016.
Development of the Western Lake Erie Ecosystem Model (WLEEM): Application
to connect phosphorus loads to cyanobacteria biomass. J. Great Lakes Res. 42
(6), 1193–1205.

Verspagen, J.M., Snelder, E.O., Visser, P.M., Huisman, J., Mur, L.R., Ibelings, B.W.,
2004. Recruitment of benthic Microcystis (cyanophyceae) to the water column:
internal buoyancy changes or resuspension? 1. J. Phycol. 40 (2), 260–270.

Verspagen, J.M., Snelder, E.O., Visser, P.M., Joehnk, K.D., Ibelings, B.W., Mur, L.R.,
Huisman, J.E.F., 2005. Benthic–pelagic coupling in the population dynamics of
the harmful cyanobacterium Microcystis. Freshwater Biol. 50 (5), 854–867.

Visser, P.M., Ibelings, B.W., Mur, L.R., 1995. Autunmal sedimentation of Microcystis
spp. as result of an increase in carbohydrate ballast at reduced temperature. J.
Plankton Res. 17 (5), 919–933.

Watson, S.B., Miller, C., Arhonditsis, G., Boyer, G.L., Carmichael, W., Charlton, M.N.,
Confesor, R., Depew, D.C., Höök, T.O., Ludsin, S.A., Matisoff, G., McElmurry, S.P.,
Murray, M.W., Peter Richards, R., Rao, Y.R., Steffen, M.M., Wilhelm, S.W., 2016.
The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. Harmful
Algae 56, 44–66.

Wynne, T.T., Stumpf, R.P., Tomlinson, M.C., Dyble, J., 2010. Characterizing a
cyanobacterial bloom in western Lake Erie using satellite imagery and
meteorological data. Limnol. Oceanogr. 55 (5), 2025–2036.

Wynne, T.T., Stumpf, R.P., Tomlinson, M.C., Fahnenstiel, G.L., Dyble, J., Schwab, D.J.,
Joshi, S.J., 2013. Evolution of a cyanobacterial bloom forecast system in western
Lake Erie: development and initial evaluation. J. Great Lakes Res. 39, 90–99.

Xue, P., Eltahir, E.A., Malanotte-Rizzoli, P., Wei, J., 2014. Local feedback mechanisms
of the shallow water region around the Maritime Continent. J. Geophys. Res.:
Oceans 119 (10), 6933–6951.

Xue, P., Schwab, D.J., Hu, S., 2015. An investigation of the thermal response to
meteorological forcing in a hydrodynamic model of Lake Superior. J. Geophys.
Res.: Oceans 120 (7), 5233–5253.

Xue, P., Pal, J.S., Ye, X., Lenters, J.D., Huang, C., Chu, P.Y., 2017. Improving the
simulation of large lakes in regional climate modeling: Two-way Lake–
atmosphere coupling with a 3D hydrodynamic model of the Great Lakes. J.
Clim. 30 (5), 1605–1627.

Xue, P., Ye, X., Pal, J.S., Chu, P.Y., Kayastha, M.B., Huang, C., 2022. Climate projections
over the Great Lakes Region: using two-way coupling of a regional climate
model with a 3-D lake model. Geosci. Model Dev. 15 (11), 4425.

Zhou, X., Rowe, M., Liu, Q., Xue, P., 2023. Comparison of Eulerian and Lagrangian
transport models for harmful algal bloom forecasts in Lake Erie. Environ.
Modell. Softw. 162, 105641.

http://refhub.elsevier.com/S0380-1330(23)00136-3/h0060
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0060
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0060
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0065
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0065
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0065
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0070
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0070
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0070
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0075
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0075
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0075
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0080
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0080
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0080
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0080
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0090
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0090
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0090
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0095
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0095
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0095
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0100
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0100
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0100
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0105
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0105
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0105
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0105
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0105
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0110
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0110
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0110
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0110
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0115
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0115
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0115
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0125
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0125
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0125
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0125
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0130
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0130
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0130
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0135
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0135
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0135
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0135
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0140
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0140
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0140
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0145
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0145
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0145
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0150
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0150
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0150
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0150
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0155
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0155
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0155
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0155
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0160
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0160
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0160
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0160
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0165
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0165
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0165
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0170
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0170
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0170
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0175
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0175
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0180
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0180
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0180
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0185
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0185
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0190
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0190
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0190
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0190
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0195
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0195
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0195
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0200
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0200
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0200
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0205
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0205
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0205
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0210
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0210
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0210
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0210
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0210
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0215
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0215
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0215
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0220
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0220
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0220
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0225
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0225
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0225
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0230
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0230
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0230
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0235
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0235
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0235
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0235
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0240
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0240
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0240
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0250
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0250
http://refhub.elsevier.com/S0380-1330(23)00136-3/h0250

	Forecasting microcystin concentrations in Lake Erie using an Eulerian tracer model
	Introduction
	Method and materials
	Observational data
	Hydrodynamic model
	Eulerian tracer model
	Microcystin production function
	Initial vertical distribution of microcystins
	Design of numerical experiments
	Model assessment

	Results
	Observed weekly MC data
	HABs Grab
	Weekly MC forecast skill assessment
	Model scenario comparison

	Discussion
	Influences of hydrodynamic transport and MC production on MCs estimation
	Spatial patterns
	2018 vs 2019 – low MCs vs high MCs
	Seasonal effect – early bloom, peak bloom, late bloom
	Water column vs surface-mixed layer

	Conclusion
	Data and code availability
	Declaration of Competing Interest
	Acknowledgments
	Appendix A Supplementary data
	References


